ترغب بنشر مسار تعليمي؟ اضغط هنا

Security proof for qudit-system-based quantum cryptography against entanglement-measurement attack

175   0   0.0 ( 0 )
 نشر من قبل Zhao-Xu Ji
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Entanglement-measurement attack is a well-known attack in quantum cryptography. In quantum cryptography protocols, eavesdropping checking can resist this attack. There are two known eavesdropping checking methods. One is to use decoy photon technology for eavesdropping checking. The other is to use the entanglement correlation of two groups of non-orthogonal entangled states for eavesdropping checking. In this paper, we prove the security against entanglement-measurement attack for the qudit-system-based quantum cryptography protocols which use the two methods for eavesdropping checking. Our security proof is useful to improve the eavesdropping checking method used in quantum cryptography protocols.



قيم البحث

اقرأ أيضاً

In state-of-the-art quantum key distribution (QKD) systems, the main limiting factor in increasing the key generation rate is the timing resolution in detecting photons. Here, we present and experimentally demonstrate a strategy to overcome this limi tation, also for high-loss and long-distance implementations. We exploit the intrinsic wavelength correlations of entangled photons using wavelength multiplexing to generate a quantum secure key from polarization entanglement. The presented approach can be integrated into both fiber- and satellite-based quantum-communication schemes, without any changes to most types of entanglement sources. This technique features a huge scaling potential allowing to increase the secure key rate by several orders of magnitude as compared to non-multiplexed schemes.
In the quantum version of a Trojan-horse attack, photons are injected into the optical modules of a quantum key distribution system in an attempt to read information direct from the encoding devices. To stop the Trojan photons, the use of passive opt ical components has been suggested. However, to date, there is no quantitative bound that specifies such components in relation to the security of the system. Here, we turn the Trojan-horse attack into an information leakage problem. This allows us quantify the system security and relate it to the specification of the optical elements. The analysis is supported by the experimental characterization, within the operation regime, of reflectivity and transmission of the optical components most relevant to security.
A practical quantum key distribution (QKD) protocol necessarily runs in finite time and, hence, only a finite amount of communication is exchanged. This is in contrast to most of the standard results on the security of QKD, which only hold in the lim it where the number of transmitted signals approaches infinity. Here, we analyze the security of QKD under the realistic assumption that the amount of communication is finite. At the level of the general formalism, we present new results that help simplifying the actual implementation of QKD protocols: in particular, we show that symmetrization steps, which are required by certain security proofs (e.g., proofs based on de Finettis representation theorem), can be omitted in practical implementations. Also, we demonstrate how two-way reconciliation protocols can be taken into account in the security analysis. At the level of numerical estimates, we present the bounds with finite resources for ``device-independent security against collective attacks.
102 - M.Genovese , C. Novero 2001
We propose a quantum transmission based on bi-photons which are doubly-entangled both in polarisation and phase. This scheme finds a natural application in quantum cryptography, where we show that an eventual eavesdropper is bound to introduce a larg er error on the quantum communication than for a single entangled bi-photon communication, when steeling the same information.
323 - Y.J. Lu , Luobei Zhu , 2005
Weak coherent states as a photon source for quantum cryptography have limit in secure data rate and transmission distance because of the presence of multi-photon events and loss in transmission line. Two-photon events in a coherent state can be taken out by a two-photon interference scheme. We investigate the security issue of utilizing this modified coherent state in quantum cryptography. A 4 dB improvement in secure data rate or a nearly two-fold increase in transmission distance over the coherent state are found. With a recently proposed and improved encoding strategy, further improvement is possible.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا