ترغب بنشر مسار تعليمي؟ اضغط هنا

Partition functions and graphs: A combinatorial approach

69   0   0.0 ( 0 )
 نشر من قبل Allan I. Solomon
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Although symmetry methods and analysis are a necessary ingredient in every physicists toolkit, rather less use has been made of combinatorial methods. One exception is in the realm of Statistical Physics, where the calculation of the partition function, for example, is essentially a combinatorial problem. In this talk we shall show that one approach is via the normal ordering of the second quantized operators appearing in the partition function. This in turn leads to a combinatorial graphical description, giving essentially Feynman-type graphs associated with the theory. We illustrate this methodology by the explicit calculation of two model examples, the free boson gas and a superfluid boson model. We show how the calculation of partition functions can be facilitated by knowledge of the combinatorics of the boson normal ordering problem; this naturally gives rise to the Bell numbers of combinatorics. The associated graphical representation of these numbers gives a perturbation expansion in terms of a sequence of graphs analogous to zero - dimensional Feynman diagrams.



قيم البحث

اقرأ أيضاً

A conventional context for supersymmetric problems arises when we consider systems containing both boson and fermion operators. In this note we consider the normal ordering problem for a string of such operators. In the general case, upon which we to uch briefly, this problem leads to combinatorial numbers, the so-called Rook numbers. Since we assume that the two species, bosons and fermions, commute, we subsequently restrict ourselves to consideration of a single species, single-mode boson monomials. This problem leads to elegant generalisations of well-known combinatorial numbers, specifically Bell and Stirling numbers. We explicitly give the generating functions for some classes of these numbers. In this note we concentrate on the combinatorial graph approach, showing how some important classical results of graph theory lead to transparent representations of the combinatorial numbers associated with the boson normal ordering problem.
The general normal ordering problem for boson strings is a combinatorial problem. In this note we restrict ourselves to single-mode boson monomials. This problem leads to elegant generalisations of well-known combinatorial numbers, such as Bell and S tirling numbers. We explicitly give the generating functions for some classes of these numbers. Finally we show that a graphical representation of these combinatorial numbers leads to sets of model field theories, for which the graphs may be interpreted as Feynman diagrams corresponding to the bosons of the theory. The generating functions are the generators of the classes of Feynman diagrams.
105 - Daniel C. McDonald 2014
One of the most basic results concerning the number-theoretic properties of the partition function $p(n)$ is that $p(n)$ takes each value of parity infinitely often. This statement was first proved by Kolberg in 1959, and it was strengthened by Subba rao in 1966 to say that both $p(2n)$ and $p(2n+1)$ take each value of parity infinitely often. These results have received several other proofs, each relying to some extent on manipulating generating functions. We give a new, self-contained proof of Subbaraos result by constructing a series of bijections and involutions, along the way getting a more general theorem concerning the enumeration of a special subset of integer partitions.
125 - A. Horzela 2004
We treat the problem of normally ordering expressions involving the standard boson operators a, a* where [a,a*]=1. We show that a simple product formula for formal power series - essentially an extension of the Taylor expansion - leads to a double ex ponential formula which enables a powerful graphical description of the generating functions of the combinatorial sequences associated with such functions - in essence, a combinatorial field theory. We apply these techniques to some examples related to specific physical Hamiltonians.
We examine partition zeta functions analogous to the Riemann zeta function but summed over subsets of integer partitions. We prove an explicit formula for a family of partition zeta functions already shown to have nice properties -- those summed over partitions of fixed length -- which yields complete information about analytic continuation, poles and trivial roots of the zeta functions in the family. Then we present a combinatorial proof of the explicit formula, which shows it to be a zeta function analog of MacMahons partial fraction decomposition of the generating function for partitions of fixed length.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا