ﻻ يوجد ملخص باللغة العربية
One of the most basic results concerning the number-theoretic properties of the partition function $p(n)$ is that $p(n)$ takes each value of parity infinitely often. This statement was first proved by Kolberg in 1959, and it was strengthened by Subbarao in 1966 to say that both $p(2n)$ and $p(2n+1)$ take each value of parity infinitely often. These results have received several other proofs, each relying to some extent on manipulating generating functions. We give a new, self-contained proof of Subbaraos result by constructing a series of bijections and involutions, along the way getting a more general theorem concerning the enumeration of a special subset of integer partitions.
Although symmetry methods and analysis are a necessary ingredient in every physicists toolkit, rather less use has been made of combinatorial methods. One exception is in the realm of Statistical Physics, where the calculation of the partition functi
Using a theorem of Frobenius filtered through partition generating function techniques, we prove partition-theoretic and $q$-series Abelian theorems, yielding analogues of Abels convergence theorem for complex power series, and related formulas. As a
We examine partition zeta functions analogous to the Riemann zeta function but summed over subsets of integer partitions. We prove an explicit formula for a family of partition zeta functions already shown to have nice properties -- those summed over
In earlier work generalizing a 1977 theorem of Alladi, the authors proved a partition-theoretic formula to compute arithmetic densities of certain subsets of the positive integers $mathbb N$ as limiting values of $q$-series as $qto zeta$ a root of un
We identify a class of semi-modular forms invariant on special subgroups of $GL_2(mathbb Z)$, which includes classical modular forms together with complementary classes of functions that are also nice in a specific sense. We define an Eisenstein-like