ترغب بنشر مسار تعليمي؟ اضغط هنا

Passive Quantum Erasure for Neutral Kaons

89   0   0.0 ( 0 )
 نشر من قبل Garbarino Gianni
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum marking and quantum erasure are discussed for the neutral kaon system. Contrary to other two-level systems, strangeness and lifetime of a neutral kaon state can be alternatively measured via an active or a passive procedure. This offers new quantum erasure possibilities. In particular, the operation of a quantum eraser in the delayed choice mode is clearly illustrated.

قيم البحث

اقرأ أيضاً

Entangled K0 anti-K0 pairs are shown to be suitable to discuss extensions and tests of Bohrs complementarity principle through the quantum marking and quantum erasure techniques suggested by M. O. Scully and K. Druehl [Phys. Rev. A 25, 2208 (1982)]. Strangeness oscillations play the role of the traditional interference pattern linked to wave-like behaviour, whereas the distinct propagation in free space of the K_S and K_L components mimics the two possible interferometric paths taken by particle-like objects.
Quantum marking and quantum erasure are discussed for the neutral kaon system. Contrary to other two-level systems, strangeness and lifetime of a neutral kaon state can be alternatively measured via an active or a passive procedure. This offers new q uantum erasure possibilities. In particular, the operation of a quantum eraser in the delayed choice mode is clearly illustrated.
We briefly illustrate a few tests of quantum mechanics which can be performed with entangled neutral kaon pairs at a Phi-factory. This includes a quantitative formulation of Bohrs complementarity principle, the quantum eraser phenomenon and various forms of Bell inequalities.
173 - Hatim Salih 2015
The phenomenon of quantum erasure has long intrigued physicists, but has surprisingly found limited practical application. Here, we propose an erasure-based protocol for quantum key distribution (QKD) that promises inherent security against detector attacks.
The Franson interference is a fourth order interference effect, which unlike the better known Hong-Ou-Mandel interference, does not require the entangled photon pairs to be present at the same space-time location for interference to occur - it is non local. Here, we use a modified Franson interferometer to experimentally demonstrate the nonlocal erasure and correction of an image of a phase-object taken through coincidence imaging. This non-local quantum erasure technique can have several potential applications such as phase corrections in quantum imaging and microscopy and also user authentication of two foreign distant parties.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا