ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum marking and quantum erasure for neutral kaons

83   0   0.0 ( 0 )
 نشر من قبل Garbarino Gianni
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Entangled K0 anti-K0 pairs are shown to be suitable to discuss extensions and tests of Bohrs complementarity principle through the quantum marking and quantum erasure techniques suggested by M. O. Scully and K. Druehl [Phys. Rev. A 25, 2208 (1982)]. Strangeness oscillations play the role of the traditional interference pattern linked to wave-like behaviour, whereas the distinct propagation in free space of the K_S and K_L components mimics the two possible interferometric paths taken by particle-like objects.

قيم البحث

اقرأ أيضاً

Quantum marking and quantum erasure are discussed for the neutral kaon system. Contrary to other two-level systems, strangeness and lifetime of a neutral kaon state can be alternatively measured via an active or a passive procedure. This offers new q uantum erasure possibilities. In particular, the operation of a quantum eraser in the delayed choice mode is clearly illustrated.
Quantum marking and quantum erasure are discussed for the neutral kaon system. Contrary to other two-level systems, strangeness and lifetime of a neutral kaon state can be alternatively measured via an active or a passive procedure. This offers new q uantum erasure possibilities. In particular, the operation of a quantum eraser in the delayed choice mode is clearly illustrated.
We briefly illustrate a few tests of quantum mechanics which can be performed with entangled neutral kaon pairs at a Phi-factory. This includes a quantitative formulation of Bohrs complementarity principle, the quantum eraser phenomenon and various forms of Bell inequalities.
173 - Hatim Salih 2015
The phenomenon of quantum erasure has long intrigued physicists, but has surprisingly found limited practical application. Here, we propose an erasure-based protocol for quantum key distribution (QKD) that promises inherent security against detector attacks.
The two-photon ghost interference experiment, generalized to the case of massive particles, is theoretically analyzed. It is argued that the experiment is intimately connected to a double-slit interference experiment where, the which-path information exists. The reason for not observing first order interference behind the double-slit, is clarified.It is shown that the underlying mechanism for the appearance of ghost interference is, the more familiar, quantum erasure.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا