ترغب بنشر مسار تعليمي؟ اضغط هنا

Comparison of Theory and Experiment for a One-Atom Laser in a Regime of Strong Coupling

41   0   0.0 ( 0 )
 نشر من قبل Andreea Boca
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Our recent paper reports the experimental realization of a one-atom laser in a regime of strong coupling (Ref. [1]). Here we provide the supporting theoretical analysis relevant to the operating regime of our experiment. By way of a simplified four-state model, we investigate the passage from the domain of conventional laser theory into the regime of strong coupling for a single intracavity atom pumped by coherent external fields. The four-state model is also employed to exhibit the vacuum-Rabi splitting and to calculate the optical spectrum. We next extend this model to incorporate the relevant Zeeman hyperfine states as well as a simple description of the pumping processes in the presence of polarization gradients and atomic motion. This extended model is employed to make quantitative comparisons with the measurements of Ref. [1] for the intracavity photon number versus pump strength and for the photon statistics as expressed by the intensity correlation function g2(tau).


قيم البحث

اقرأ أيضاً

Over the past decade, strong interactions of light and matter at the single-photon level have enabled a wide set of scientific advances in quantum optics and quantum information science. This work has been performed principally within the setting of cavity quantum electrodynamics with diverse physical systems, including single atoms in Fabry-Perot resonators, quantum dots coupled to micropillars and photonic bandgap cavities, and Cooper-pairs interacting with superconducting resonators. Experiments with single, localized atoms have been at the forefront of these advances with the use of optical resonators in high-finesse Fabry-Perot configurations. As a result of the extreme technical challenges involved in further improving the multilayer dielectric mirror coatings of these resonators and in scaling to large numbers of devices, there has been increased interest in the development of alternative microcavity systems. Here we show strong coupling between individual Cesium atoms and the fields of a high-quality toroidal microresonator. From observations of transit events for single atoms falling through the resonators evanescent field, we determine the coherent coupling rate for interactions near the surface of the resonator. We develop a theoretical model to quantify our observations, demonstrating that strong coupling is achieved, with the rate of coherent coupling exceeding the dissipative rates of the atom and the cavity. Our work opens the way for investigations of optical processes with single atoms and photons in lithographically fabricated microresonators. Applications include the implementation of quantum networks, scalable quantum logic with photons, and quantum information processing on atom chips.
We consider the near-resonant interaction between a single atom and a focused light mode, where a single atom localized at the focus of a lens can scatter a significant fraction of light. Complementary to previous experiments on extinction and phase shift effects of a single atom, we report here on the measurement of coherently backscattered light. The strength of the observed effect suggests combining strong focusing with the well-established methods of cavity QED. We consider theoretically a nearly concentric cavity, which should allow for a strongly focused optical mode. Simple estimates show that in a such case one can expect a significant single photon Rabi frequency. This opens new perspectives and a possibility to scale up the system consisting of many atom+cavity nodes for quantum networking due to a significant technical simplification of the atom--light interfaces.
We consider the ionisation of atomic hydrogen by a strong infrared field. We extend and study in more depth an existing semi-analytical model. Starting from the time-dependent Schroedinger equation in momentum space and in the velocity gauge we subst itute the kernel of the non-local Coulomb potential by a sum of N separable potentials, each of them supporting one hydrogen bound state. This leads to a set of N coupled one-dimensional linear Volterra integral equations to solve. We analyze the gauge problem for the model, the different ways of generating the separable potentials and establish a clear link with the strong field approximation which turns out to be a limiting case of the present model. We calculate electron energy spectra as well as the time evolution of electron wave packets in momentum space. We compare and discuss the results obtained with the model and with the strong field approximation and examine in this context, the role of excited states.
92 - Nathan D. Poulin 2014
Since the photon box gedanken experiments of several of the founding fathers of modern physics, considerable progress has been made in differentiating the quantum and classical worlds. In this pursuit, the cavity as an open quantum system has been in dispensable. From the quantization of the atom and field within a superconducting cavity, a unique realm of EPR type entanglement has emerged. In this way, dynamical evolution of the system in the strong coupling regime is intimately tied with the coupling of an atom with a single resonant or non-resonant mode within the cavity. More specifically, the cavity can be prepared so that the atom is detected in a desired state. Here, the essentials of the strong coupling regime of Cavity Quantum Electrodynamics (QED) are reviewed for cavities tuned with a single atomic transition. A brief introduction of the systems is followed by an approach of the more striking effects, leading towards Ramsey Interferometry and Quantum Non-Demolition measurements as means for quantum gate protocol. Because the integrity of the atom and photon states is important for the advancement of quantum computation, a brief discussion of the decoherence problems is also presented. This document is meant to introduce the topic in a way that makes it easily accessible to those working in closely related areas of physics, and to highlight key applications and some basic questions concerning decoherence and the measurement problem.
248 - Ofer Kfir 2019
This work sets a road-map towards an experimental realization of strong coupling between free-electrons and photons, and analytically explores entanglement phenomena that emerge in this regime. The proposed model unifies the strong-coupling predictio ns with known electron-photon interactions. Additionally, this work predicts a non-Columbic entanglement between freely propagating electrons. Since strong-coupling can map entanglements between photon pairs onto photon-electron pairs, it may harness electron beams for quantum communication, thus far exclusive to photons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا