ﻻ يوجد ملخص باللغة العربية
Time evolution of a harmonic oscillator linearly coupled to a heat bath is compared for three classes of initial states for the bath modes - grand canonical ensemble, number states and coherent states. It is shown that for a wide class of number states the behavior of the oscillator is similar to the case of the equilibrium bath. If the bath modes are initially in coherent states, then the variances of the oscillator coordinate and momentum, as well as its entanglement to the bath, asymptotically approach the same values as for the oscillator at zero temperature and the average coordinate and momentum show a Brownian-like behavior. We derive an exact master equation for the characteristic function of the oscillator valid for arbitrary factorized initial conditions. In the case of the equilibrium bath this equation reduces to an equation of the Hu-Paz-Zhang type, while for the coherent states bath it leads to an exact stochastic master equation with a multiplicative noise.
We return to the description of the damped harmonic oscillator by means of a closed quantum theory with a general assessment of previous works, in particular the Bateman-Caldirola-Kanai model and a new model recently proposed by one of the authors. W
It is shown that the classical damped harmonic oscillator belongs to the family of fourth-order Pais-Uhlenbeck oscillators. It follows that the solutions to the damped harmonic oscillator equation make the Pais-Uhlenbeck action stationary. Two system
We consider the quantum harmonic oscillator in contact with a finite temperature bath, modelled by the Caldeira-Leggett master equation. Applying periodic kicks to the oscillator, we study the system in different dynamical regimes between classical i
We solve the optimal quantum limit of probing a classical force exactly by a damped oscillator initially prepared in the factorized squeezed state. The memory effects of the thermal bath on the oscillator evolution are investigated. We show that the
Master equations are a useful tool to describe the evolution of open quantum systems. In order to characterize the mathematical features and the physical origin of the dynamics, it is often useful to consider different kinds of master equations for t