ترغب بنشر مسار تعليمي؟ اضغط هنا

Stimulated emission with a non-equilibrium state of radiation

205   0   0.0 ( 0 )
 نشر من قبل Imafuku Kentaro
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The stimulated emission from an atom interacting with radiation in non-equilibrium state is considered. The stochastic limit, applied to the non-relativistic Hamiltonian describing the interaction, shows that the state of atoms, driven by some non-equilibrium state of the field approaches a stationary state which can continuously emit photon, unlike the case with an equilibrium state.

قيم البحث

اقرأ أيضاً

Frequency non-degenerate entangled photon pairs have been employed in quantum communication, imaging, and sensing. To characterize quantum entangled state with long-wavelength (infrared, IR or even terahertz, THz) photon, one needs to either develop the single-photon detectors at the corresponding wavelengths or use novel tomography technique, which does not rely on single-photon detections, such as stimulated emission tomography (SET). We use standard quantum state tomography and SET to measure the density matrix of entangled photon pairs, with one photon at 1550 nm and the other one at 810 nm, and obtain highly consistent results, showing the reliability of SET. Our work paves the way for efficient measurement of entangled photons with highly dissimilar frequencies, even to the frequencies where single-photon detections are not available.
We investigate surface plasmon amplification in a silver nanoparticle coupled to an externally driven three-level gain medium, and show that quantum coherence significantly enhances the generation of surface plasmons. Surface plasmon amplification by stimulated emission of radiation is achieved in the absence of population inversion on the spasing transition, which reduces the pump requirements. The coherent drive allows us to control the dynamics, and holds promise for quantum control of nanoplasmonic devices.
In this work we demonstrate the use of stimulated emission tomography to characterize a hyper-entangled state generated by spontaneous parametric down-conversion in a CW-pumped source. In particular, we consider the generation of hyper-entangled stat es consisting of photon pairs entangled in polarisation and path. These results extend the capability of stimulated emission tomography beyond the polarisation degree of freedom, and demonstrate the use of this technique to study states in higher dimension Hilbert spaces.
Nonlinear optical microscopy techniques have emerged as a set of successful tools for biological imaging. Stimulated emission microscopy belongs to a small subset of pump-probe techniques which can image non-fluorescent samples without requiring fluo rescent labelling. However, its sensitivity has been shown to be ultimately limited by the quantum fluctuations in the probe beam. We propose and experimentally implement sub-shot-noise limited stimulated emission microscopy by preparing the probe pulse in an intensity-squeezed state. This technique paves the way for imaging delicate biological samples that have no detectable fluorescence with sensitivity beyond standard quantum fluctuations.
Periodically driven dynamics of open quantum systems is very interesting because typically non-equilibrium steady state is reached, which is characterized by a non-vanishing current. In this work, we study time discrete and periodically driven dynami cs experimentally for a single photon that its coupled to its environment. We develop a comprehensive theory which explains the experimental observations and offers an analytical characterization of the non-equilibrium steady states of the system. We demonstrate that the periodic driving and the properties of the environment can be engineered in such a way that there is asymptotically non-vanishing bidirectional information flow between the open system and the environment.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا