ترغب بنشر مسار تعليمي؟ اضغط هنا

Motion of Three Vortices near Collapse

42   0   0.0 ( 0 )
 نشر من قبل Leoncini
 تاريخ النشر 1999
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A system of three point vortices in an unbounded plane has a special family of self-similarly contracting or expanding solutions: during the motion, vortex triangle remains similar to the original one, while its area decreases (grows) at a constant rate. A contracting configuration brings three vortices to a single point in a finite time; this phenomenon known as vortex collapse is of principal importance for many-vortex systems. Dynamics of close-to-collapse vortex configurations depends on the way the collapse conditions are violated. Using an effective potential representation, a detailed quantitative analysis of all the different types of near-collapse dynamics is performed when two of the vortices are identical. We discuss time and length scales, emerging in the problem, and their behavior as the initial vortex triangle is approaching to an exact collapse configuration. Different types of critical behaviors, such as logarithmic or power-law divergences are exhibited, which emphasizes the importance of the way the collapse is approached. Period asymptotics for all singular cases are presented as functions of the initial vortices configurations. Special features of passive particle mixing by a near-collapse flows are illustrated numerically.

قيم البحث

اقرأ أيضاً

351 - Yifei Guan , James Riley , 2019
The study focuses on the 3D electro-hydrodynamic (EHD) instability for flow between to parallel electrodes with unipolar charge injection with and without cross-flow. Lattice Boltzmann Method (LBM) with two-relaxation time (TRT) model is used to stud y flow pattern. In the absence of cross-flow, the base-state solution is hydrostatic, and the electric field is one-dimensional. With strong charge injection and high electrical Rayleigh number, the system exhibits electro-convective vortices. Disturbed by different perturbation patterns, such as rolling pattern, square pattern, and hexagon pattern, the flow patterns develop according to the most unstable modes. The growth rate and the unstable modes are examined using dynamic mode decomposition (DMD) of the transient numerical solutions. The interactions between the applied Couette and Poiseuille cross-flows and electroconvective vortices lead to the flow patterns change. When the cross-flow velocity is greater than a threshold value, the spanwise structures are suppressed; however, the cross-flow does not affect the streamwise patterns. The dynamics of the transition is analyzed by DMD. Hysteresis in the 3D to 2D transition is characterized by the non-dimensional parameter Y, a ratio of the coulombic force to viscous term in the momentum equation. The change from 3D to 2D structures enhances the convection marked by a significant increase in the electric Nusselt number.
When a fluid system is subject to strong rotation, centrifugal fluid motion is expected, i.e., denser (lighter) fluid moves outward (inward) from (toward) the axis of rotation. Here we demonstrate, both experimentally and numerically, the existence o f an unexpected outward motion of warm and lighter vortices in rotating turbulent convection. This anomalous vortex motion occurs under rapid rotations when the centrifugal buoyancy is sufficiently strong to induce a symmetry-breaking in the vorticity field, i.e., the vorticity of the cold anticyclones overrides that of the warm cyclones. We show that through hydrodynamic interactions the densely populated vortices can self-aggregate into coherent clusters and exhibit collective motion in this flow regime. Interestingly, the correlation of the vortex velocity fluctuations within a cluster is scale-free, with the correlation length being about 30% of the cluster length. Such long-range correlation leads to the collective outward motion of cyclones. Our study provides new understanding of vortex dynamics that are widely present in nature.
The dynamics of wetting and dewetting is largely determined by the velocity field near the contact lines. For water drops it has been observed that adding surfactant decreases the dynamic receding contact angle even at a concentration much lower than the critical micelle concentration (CMC). To better understand why surfactants have such a drastic effect on drop dynamics, we constructed a dedicated a setup on an inverted microscope, in which an aqueous drop is held stationary while the transparent substrate is moved horizontally. Using astigmatism particle tracking velocimetry, we track the 3D displacement of the tracer particles in the flow. We study how surfactants alter the flow dynamics near the receding contact line of a moving drop for capillary numbers in the order of $10^{-6}$. Even for surfactant concentrations $c$ far below the critical micelle concentration ($c ll$ CMC) Marangoni stresses change the flow drastically. We discuss our results first in a 2D model that considers advective and diffusive surfactant transport and deduce estimates of the magnitude and scaling of the Marangoni stress from this. Modeling and experiment agree that a tiny gradient in surface tension of a few $mu N , m^{-1}$ is enough to alter the flow profile significantly. The variation of the Marangoni stress with the distance from the contact line suggests that the 2D advection-diffusion model has to be extended to a full 3D model. The effect is ubiquitous, since surfactant is present in many technical and natural dewetting processes either deliberately or as contamination.
A fluid dynamics video of the rotating, weakly stratified Boussinesq equations is presented that illustrates the spontaneous formation of columnar vortices in the presence of stochastic, white noise forcing.
Numerical simulation of Electroconvective vortices behavior in the presence of Couette flow between two infinitely long electrodes is investigated. The two-relaxation-time Lattice Boltzmann Method with fast Poisson solver solves for the spatiotempora l distribution of flow field, electric field, and charge density. Couette cross-flow is applied to the solutions after the electroconvective vortices are established. Increasing cross-flow velocity deforms the vortices and eventually suppresses them when threshold values of shear stress are reached.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا