ﻻ يوجد ملخص باللغة العربية
In complex scale-free networks, ranking the individual nodes based upon their importance has useful applications, such as the identification of hubs for epidemic control, or bottlenecks for controlling traffic congestion. However, in most real situations, only limited sub-structures of entire networks are available, and therefore the reliability of the order relationships in sampled networks requires investigation. With a set of randomly sampled nodes from the underlying original networks, we rank individual nodes by three centrality measures: degree, betweenness, and closeness. The higher-ranking nodes from the sampled networks provide a relatively better characterisation of their ranks in the original networks than the lower-ranking nodes. A closeness-based order relationship is more reliable than any other quantity, due to the global nature of the closeness measure. In addition, we show that if access to hubs is limited during the sampling process, an increase in the sampling fraction can in fact decrease the sampling accuracy. Finally, an estimation method for assessing sampling accuracy is suggested.
The availability of data from many different sources and fields of science has made it possible to map out an increasing number of networks of contacts and interactions. However, quantifying how reliable these data are remains an open problem. From B
We have two main aims in this paper. First we use theories of disease spreading on networks to look at the COVID-19 epidemic on the basis of individual contacts -- these give rise to predictions which are often rather different from the homogeneous m
We derive a class of generalized statistics, unifying the Bose and Fermi ones, that describe any system where the first-occupation energies or probabilities are different from subsequent ones, as in presence of thresholds, saturation, or aging. The s
Networks in nature possess a remarkable amount of structure. Via a series of data-driven discoveries, the cutting edge of network science has recently progressed from positing that the random graphs of mathematical graph theory might accurately descr
Probability distributions of human displacements has been fit with exponentially truncated Levy flights or fat tailed Pareto inverse power law probability distributions. Thus, people usually stay within a given location (for example, the city of resi