ﻻ يوجد ملخص باللغة العربية
We have two main aims in this paper. First we use theories of disease spreading on networks to look at the COVID-19 epidemic on the basis of individual contacts -- these give rise to predictions which are often rather different from the homogeneous mixing approaches usually used. Our second aim is to look at the role of social deprivation, again using networks as our basis, in the spread of this epidemic. We choose the city of Kolkata as a case study, but assert that the insights so obtained are applicable to a wide variety of urban environments which are densely populated and where social inequalities are rampant. Our predictions of hotspots are found to be in good agreement with those currently being identifed empirically as containment zones and provide a useful guide for identifying potential areas of concern.
We introduce a general stochastic model for the spread of rumours, and derive mean-field equations that describe the dynamics of the model on complex social networks (in particular those mediated by the Internet). We use analytical and numerical solu
Improved mobility not only contributes to more intensive human activities but also facilitates the spread of communicable disease, thus constituting a major threat to billions of urban commuters. In this study, we present a multi-city investigation o
We study the epidemic spreading on spatial networks where the probability that two nodes are connected decays with their distance as a power law. As the exponent of the distance dependence grows, model networks smoothly transition from the random net
We develop a theoretical framework for the study of epidemic-like social contagion in large scale social systems. We consider the most general setting in which different communication platforms or categories form multiplex networks. Specifically, we
We study a multi-type SIR epidemic process among a heterogeneous population that interacts through a network. When we base social contact on a random graph with given vertex degrees, we give limit theorems on the fraction of infected individuals. For