ﻻ يوجد ملخص باللغة العربية
Three dimensional electrodynamic trapping of neutral atoms has been demonstrated. By applying time-varying inhomogeneous electric fields with micron-sized electrodes, nearly $10^2$ strontium atoms in the $^1S_0$ state have been trapped with a lifetime of 80 ms. In order to design the electrodes, we numerically analyzed the electric field and simulated atomic trajectories in the trap, which showed reasonable agreement with the experiment.
Detecting single atoms (qubits) is a key requirement for implementing quantum information processing on an atom chip. The detector should ideally be integrated on the chip. Here we present and compare different methods capable of detecting neutral at
We study the dynamic behavior of ultracold neutral atoms in a macroscopic ac electric trap. Confinement in such a trap is achieved by switching between two saddle-point configurations of the electric field. The gradual formation of a stably trapped c
We describe experiments on trapping of atoms in microscopic magneto-optical traps on an optically transparent permanent-magnet atom chip. The chip is made of magnetically hard ferrite-garnet material deposited on a dielectric substrate. The confining
We demonstrate the possibility of trapping about one hundred million rubidium atoms in a magneto-optical trap with several of the beams passing through a transparent atom chip mounted on a vacuum cell wall. The chip is made of a gold microcircuit dep
Optical dipole traps and atom chips are two very powerful tools for the quantum manipulation of neutral atoms. We demonstrate that both methods can be combined by creating an optical lattice potential on an atom chip. A red-detuned laser beam is retr