ترغب بنشر مسار تعليمي؟ اضغط هنا

Nanoseconds field emitted current pulses from ZrC needles and field emitter arrays

53   0   0.0 ( 0 )
 نشر من قبل Frederic Le Pimpec
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The properties of the electron source define the ultimate limit of the beam quality in linear accelerators like Free Electron Lasers (FEL). The goal is to develop an electron gun delivering beam emittance lower than current state of the art. Such a gun should reduce the cost and size of an X-ray Free Electron Laser (XFEL). In this paper we present two concepts of field emitter cathodes which could potentially produce low emittance beam. The first challenging parameter for such cathode is to emit peak current as high as 5 A. This is the minimum current requirement for the XFEL concept from Paul Scherrer Institut.1 Maximum current of 0.12 A and 0.58 A have been reached respectively with field emitter arrays (FEA) and single needle cathodes. Laser assisted field emission gave encouraging results to reach even higher peak current and to pre-bunch the beam.



قيم البحث

اقرأ أيضاً

Field Emitting Arrays (FEAs) are a promising alternative to the conventional cathodes in different vacuum electronic devices such as traveling wave tubes, electron accelerators and etc. Electrical gating and modulation capabilities, together with the ability to produce stable and homogeneous electron beam in high electric field environment are the key requirements for their practical application. Due to relatively high gate capacitance, fast controlling of FEA emission is difficult. In order to achieve sub-nanosecond, electrically controlled, FEA based electron emission a special pulsed gate driver was developed. Bipolar high voltage (HV)pulses are used to rapidly inject and remove charge form FEA gate electrode controlling quickly electron extraction gate voltage. Short electron emission pulses (<600 ps FWHM) were observed in low and high gradient (up to 12 MV/m) environment. First attempts were made to combine FEA based electron emission with radio frequency acceleration structures (1.5 GHz) using pulsed preacceleration. The gate driver design together with low inductance FEA chip contact system is described. The results obtained in low and high gradient experimental setups are presented and discussed.
We demonstrate the fabrication of large-scale arrays of single photon emitters (SPEs) in hexagonal boron nitride (hBN). Bottom-up growth of hBN onto nanoscale arrays of dielectric pillars yields corresponding arrays of hBN emitters at the pillar site s. Statistical analysis shows that the pillar diameter is critical for isolating single defects, and diameters of ~250 nm produce a near-unity yield of a single emitter at each pillar site. Our results constitute a promising route towards spatially-controlled generation of hBN SPEs and provide an effective and efficient method to create large scale SPE arrays. The results pave the way to scalability and high throughput fabrication of SPEs for advanced quantum photonic applications.
Hydrodynamic optically-field-ionized (HOFI) plasma channels up to 100mm long are investigated. Optical guiding is demonstrated of laser pulses with a peak input intensity of $6times10^{17}$ W cm$^{-2}$ through 100mm long plasma channels with on-axis densities measured interferometrically to be as low as $n_{e0} = (1.0pm0.3)times10^{17}$cm$^{-3}$. Guiding is also observed at lower axial densities, which are inferred from magneto-hydrodynamic simulations to be approximately $7times10^{16}$cm$^{-3}$. Measurements of the power attenuation lengths of the channels are shown to be in good agreement with those calculated from the measured transverse electron density profiles. To our knowledge, the plasma channels investigated in this work are the longest, and have the lowest on-axis density, of any free-standing waveguide demonstrated to guide laser pulses with intensities above $>10^{17}$ W cm$^{-2}$.
Monolayer molybdenum disulfide (MoS$_2$) nanosheets, obtained via chemical vapor deposition onto SiO$_2$/Si substrates, are exploited to fabricate field-effect transistors with n-type conduction, high on/off ratio, steep subthreshold slope and good m obility. The transistor channel conductance increases with the reducing air pressure due to oxygen and water desorption. Local field emission measurements from the edges of the MoS$_2$ nanosheets are performed in high vacuum using a tip-shaped anode. It is demonstrated that the voltage applied to the Si substrate back-gate modulates the field emission current. Such a finding, that we attribute to gate-bias lowering of the MoS$_2$ electron affinity, enables a new field-effect transistor based on field emission.
We describe the results of experiments and simulations performed with the aim of extending photoelectron spectroscopy with intense laser pulses to the case of molecular compounds. Dimer frame photoelectron angular distributions generated by double io nization of N$_2$-N$_2$ and N$_2$-O$_2$ van der Waals dimers with ultrashort, intense laser pulses are measured using four-body coincidence imaging with a reaction microscope. To study the influence of the first-generated molecular ion on the ionization behavior of the remaining neutral molecule we employ a two-pulse sequence comprising of a linearly polarized and a delayed elliptically polarized laser pulse that allows distinguishing the two ionization steps. By analysis of the obtained electron momentum distributions we show that scattering of the photoelectron on the neighbouring molecular potential leads to a deformation and rotation of the photoelectron angular distribution as compared to that measured for an isolated molecule. Based on this result we demonstrate that the electron momentum space in the dimer case can be separated, allowing to extract information about the ionization pathway from the photoelectron angular distributions. Our work, when implemented with variable pulse delay, opens up the possibility of investigating light-induced electronic dynamics in molecular dimers using angularly resolved photoelectron spectroscopy with intense laser pulses.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا