ترغب بنشر مسار تعليمي؟ اضغط هنا

Hydrodynamic flow patterns and synchronization of beating cilia

136   0   0.0 ( 0 )
 نشر من قبل Andrej Vilfan
 تاريخ النشر 2005
  مجال البحث فيزياء علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We calculate the hydrodynamic flow field generated far from a cilium which is attached to a surface and beats periodically. In the case of two beating cilia, hydrodynamic interactions can lead to synchronization of the cilia, which are nonlinear oscillators. We present a state diagram where synchronized states occur as a function of distance of cilia and the relative orientation of their beat. Synchronized states occur with different relative phases. In addition, asynchronous solutions exist. Our work could be relevant for the synchronized motion of cilia generating hydrodynamic flows on the surface of cells.

قيم البحث

اقرأ أيضاً

Cilia and flagella are hair-like extensions of eukaryotic cells which generate oscillatory beat patterns that can propel micro-organisms and create fluid flows near cellular surfaces. The evolutionary highly conserved core of cilia and flagella consi sts of a cylindrical arrangement of nine microtubule doublets, called the axoneme. The axoneme is an actively bending structure whose motility results from the action of dynein motor proteins cross-linking microtubule doublets and generating stresses that induce bending deformations. The periodic beat patterns are the result of a mechanical feedback that leads to self-organized bending waves along the axoneme. Using a theoretical framework to describe planar beating motion, we derive a nonlinear wave equation that describes the fundamental Fourier mode of the axonemal beat. We study the role of nonlinearities and investigate how the amplitude of oscillations increases in the vicinity of an oscillatory instability. We furthermore present numerical solutions of the nonlinear wave equation for different boundary conditions. We find that the nonlinear waves are well approximated by the linearly unstable modes for amplitudes of beat patterns similar to those observed experimentally.
Carpets of actively bending cilia can exhibit self-organized metachronal coordination. Past research proposed synchronization by hydrodynamic coupling, but if such coupling is strong enough to overcome active phase noise had been addressed only for p airs of cilia. Using a multi-scale model calibrated by experimental cilia beat patterns, we find local multi-stability of wave modes. Yet, a single mode, corresponding to a dexioplectic wave, has predominant basin-of-attraction. Beyond a characteristic noise strength, we observe an abrupt loss of global synchronization even in finite systems.
In embryonic development, programmed cell shape changes are essential for building functional organs, but in many cases the mechanisms that precisely regulate these changes remain unknown. We propose that fluid-like drag forces generated by the motio n of an organ through surrounding tissue could generate changes to its structure that are important for its function. To test this hypothesis, we study the zebrafish left-right organizer, Kupffers vesicle (KV), using experiments and mathematical modeling. During development, monociliated cells that comprise the KV undergo region-specific shape changes along the anterior-posterior axis that are critical for KV function: anterior cells become long and thin, while posterior cells become short and squat. Here, we develop a mathematical vertex-like model for cell shapes, which incorporates both tissue rheology and cell motility, and constrain the model parameters using previously published rheological data for the zebrafish tailbud [Serwane et al.] as well as our own measurements of the KV speed. We find that drag forces due to dynamics of cells surrounding the KV could be sufficient to drive KV cell shape changes during KV development. More broadly, these results suggest that cell shape changes could be driven by dynamic forces not typically considered in models or experiments.
Synchronization among arrays of beating cilia is one of the emergent phenomena in biological processes at meso-scopic scales. Strong inter-ciliary couplings modify the natural beating frequencies, $omega$, of individual cilia to produce a collective motion that moves around a group frequency $omega_m$. Here we study the thermodynamic cost of synchronizing cilia arrays by mapping their dynamics onto a generic phase oscillator model. The model suggests that upon synchronization the mean heat dissipation rate is decomposed into two contributions, dissipation from each ciliums own natural driving force and dissipation arising from the interaction with other cilia, the latter of which can be interpreted as the one produced by a potential with a time-dependent protocol in the framework of our model. The spontaneous phase-synchronization of beating dynamics of cilia induced by strong inter-ciliary coupling is always accompanied with a significant reduction of dissipation for the cilia population, suggesting that organisms as a whole expend less energy by attaining a temporal order. At the level of individual cilia, however, a population of cilia with $|omega|< omega_m$ expend more amount of energy upon synchronization.
Sperm swimming at low Reynolds number have strong hydrodynamic interactions when their concentration is high in vivo or near substrates in vitro. The beating tails not only propel the sperm through a fluid, but also create flow fields through which s perm interact with each other. We study the hydrodynamic interaction and cooperation of sperm embedded in a two-dimensional fluid by using a particle-based mesoscopic simulation method, multi-particle collision dynamics (MPC). We analyze the sperm behavior by investigating the relationship between the beating-phase difference and the relative sperm position, as well as the energy consumption. Two effects of hydrodynamic interaction are found, synchronization and attraction. With these hydrodynamic effects, a multi-sperm system shows swarm behavior with a power-law dependence of the average cluster size on the width of the distribution of beating frequencies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا