ﻻ يوجد ملخص باللغة العربية
During the Eddy Experiment, two synchronous GPS receivers were flown at 1 km altitude to collect L1 signals and their reflections from the sea surface for assessment of altimetric precision and accuracy. Wind speed (U10) was around 10 m/s, and SWH up to 2 m. A geophysical parametric waveform model was used for retracking and estimation of the lapse between the direct and reflected signals with a 1-second precision of 3 m. The lapse was used to estimate the SSH along the track using a differential model. The RMS error of the 20 km averaged GNSS-R absolute altimetric solution with respect to Jason-1 SSH and a GPS buoy measurement was of 10 cm, with a 2 cm mean difference. Multipath and retracking parameter sensitivity due to the low altitude are suspected to have degraded accuracy. This result provides an important milestone on the road to a GNSS-R mesoscale altimetry space mission.
We report on the retrieval of directional sea surface roughness, in terms of its full directional mean square slope (including direction and isotropy), from Global Navigation Satellite System Reflections (GNSS-R) Delay-Doppler-Map (DDM) data collecte
In this paper we focus on the microwave bistatic scattering process, with the aim of deriving an expression for the interferometric complex field auto-correlation function from a static platform. We start from the Fresnel integral and derive the auto
The mesoscale eddy field plays a key role in the mixing and transport of physical and biological properties and redistribute energy budgets in the ocean. Eddy kinetic energy is commonly defined as the kinetic energy of the time-varying component of t
We address the feasibility of a GNSS-R code-altimetry space mission and more specifically a dominant term of its error budget: the reflected-signal range precision. This is the RMS error on the reflected-signal delay, as estimated by waveform retrack
Eddy saturation is the regime in which the total time-mean volume transport of an oceanic current is relatively insensitive to the wind stress forcing and is often invoked as a dynamical description of Southern Ocean circulation. We revisit the probl