ترغب بنشر مسار تعليمي؟ اضغط هنا

On the GNSS-R Interferometric Complex Field Coherence Time

105   0   0.0 ( 0 )
 نشر من قبل Giulio Ruffini
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we focus on the microwave bistatic scattering process, with the aim of deriving an expression for the interferometric complex field auto-correlation function from a static platform. We start from the Fresnel integral and derive the auto-correlation function in the Fraunhofer and Modified Fraunhofer regime. The autocorrelation function at short times can be expressed as a Gaussian with a direction dependent time scale. The directional modulation is a function of the angle between the scattering direction and the wave direction. The obtained relation can be used for directional sea state estimation using one or more GNSS-R coastal receivers.

قيم البحث

اقرأ أيضاً

During the Eddy Experiment, two synchronous GPS receivers were flown at 1 km altitude to collect L1 signals and their reflections from the sea surface for assessment of altimetric precision and accuracy. Wind speed (U10) was around 10 m/s, and SWH up to 2 m. A geophysical parametric waveform model was used for retracking and estimation of the lapse between the direct and reflected signals with a 1-second precision of 3 m. The lapse was used to estimate the SSH along the track using a differential model. The RMS error of the 20 km averaged GNSS-R absolute altimetric solution with respect to Jason-1 SSH and a GPS buoy measurement was of 10 cm, with a 2 cm mean difference. Multipath and retracking parameter sensitivity due to the low altitude are suspected to have degraded accuracy. This result provides an important milestone on the road to a GNSS-R mesoscale altimetry space mission.
We report on the retrieval of directional sea surface roughness, in terms of its full directional mean square slope (including direction and isotropy), from Global Navigation Satellite System Reflections (GNSS-R) Delay-Doppler-Map (DDM) data collecte d during an experimental flight at 1 km altitude. This study emphasizes the utilization of the entire DDM to more precisely infer ocean roughness directional parameters. In particular, we argue that the DDM exhibits the impact of both roughness and scatterer velocity. Obtained estimates are analyzed and compared to co-located Jason-1 measurements, ECMWF numerical weather model outputs and optical data.
62 - O. Germain , G. Ruffini 2006
We address the feasibility of a GNSS-R code-altimetry space mission and more specifically a dominant term of its error budget: the reflected-signal range precision. This is the RMS error on the reflected-signal delay, as estimated by waveform retrack ing. So far, the approach proposed by [Lowe et al., 2002] has been the state of the art to theoretically evaluate this precision, although known to rely on strong assumptions (e.g., no speckle noise). In this paper, we perform a critical review of this model and propose an improvement based on the Cramer-Rao Bound (CRB) approach. We derive closed-form expressions for both the direct and reflected signals. The performance predicted by CRB analysis is about four times worse for typical space mission scenarios. The impact of this result is discussed in the context of two classes of GNSS-R applications: mesoscale oceanography and tsunami detection.
52 - G. R. Keller , Z. Wang , A. Wu 2017
Aqua MODIS Moon images obtained with bands 20 to 26 (3.66 - 4.55 and 1.36 - 1.39 $mu$m) during scheduled lunar events show evidence of electronic crosstalk contamination of the response of detector 1. In this work, we determined the sending bands for each receiving band. We found that the contaminating signal originates, in all cases, from the detector 10 of the corresponding sending band and that the signals registered by the receiving and sending detectors are always read out in immediate sequence. We used the lunar images to derive the crosstalk coefficients, which were then applied in the correction of electronic crosstalk striping artifacts present in L1B images, successfully restoring product quality.
95 - Zheng Zhou 2017
Using a high energy electron beam for the imaging of high density matter with both high spatial-temporal and areal density resolution under extreme states of temperature and pressure is one of the critical challenges in high energy density physics . When a charged particle beam passes through an opaque target, the beam will be scattered with a distribution that depends on the thickness of the material. By collecting the scattered beam either near or off axis, so-called bright field or dark field images can be obtained. Here we report on an electron radiography experiment using 45 MeV electrons from an S-band photo-injector, where scattered electrons, after interacting with a sample, are collected and imaged by a quadrupole imaging system. We achieved a few micrometers (about 4 micrometers) spatial resolution and about 10 micrometers thickness resolution for a silicon target of 300-600 micron thickness. With addition of dark field images that are captured by selecting electrons with large scattering angle, we show that more useful information in determining external details such as outlines, boundaries and defects can be obtained.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا