ﻻ يوجد ملخص باللغة العربية
Genetic algorithms, as implemented in optimal control strategies, are currently successfully exploited in a wide range of problems in molecular physics. In this context, laser control of molecular alignment and orientation remains a very promising issue with challenging applications extending from chemical reactivity to nanoscale design. We emphasize the complementarity between basic quantum mechanisms monitoring alignment/orientation processes and optimal control scenarios. More explicitly, if on one hand we can help the optimal control scheme to take advantage of such mechanisms by appropriately building the targets and delineating the parameter sampling space, on the other hand we expect to learn, from optimal control results, some robust and physically sound dynamical mechanisms. We present basic mechanisms for alignment and orientation, such as pendular states accommodated by the molecule-plus-field effective potential and the kick mechanism obtained by a sudden excitation. Very interestingly, an optimal control scheme for orientation, based on genetic algorithms, also leads to a sudden pulsed field bearing the characteristic features of the kick mechanism. Optimal pulse shaping for very efficient and long-lasting orientation, together with robustness with respect to temperature effects, are among our future prospects.
The transition between two distinct mechanisms for the laser-induced field-free orientation of CO molecules is observed via measurements of orientation revival times and subsequent comparison to theoretical calculations. In the first mechanism, which
A strong inhomogeneous static electric field is used to spatially disperse a rotationally cold supersonic beam of 2,6-difluoroiodobenzene molecules according to their rotational quantum state. The molecules in the lowest lying rotational states are s
A strong inhomogeneous static electric field is used to spatially disperse a supersonic beam of polar molecules, according to their quantum state. We show that the molecules residing in the lowest-lying rotational states can be selected and used as t
We show that combined permanent and induced electric dipole interactions of polar and polarizable molecules with collinear electric fields lead to a sui generis topology of the corresponding Stark energy surfaces and of other observables - such as al
We demonstrate the experimental realization of impulsive alignment of carbonyl sulfide (OCS) molecules at the Low Density Matter Beamline (LDM) at the free-electron laser FERMI. OCS molecules in a molecular beam were impulsively aligned using 200 fs