ﻻ يوجد ملخص باللغة العربية
The National Ignition Facility (NIF) will contain the worlds most powerful laser. NIF requires more than 1500 precisely timed trigger pulses to control the timing of laser and diagnostic equipment. The Integrated Timing System applies new concepts to generate and deliver triggers at preprogrammed times to equipment throughout the laser and target areas of the facility. Trigger pulses during the last 2 seconds of a shot cycle are required to have a jitter of less than 20 ps (rms) and a wander of less than 100 ps (max). Also, the Timing System allows simultaneous, independent use by multiple clients by partitioning the system hardware into subsets that are controlled via independent software keys. The hardware necessary to implement the Integrated Timing System is commercially available. -- This work is performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.
A highly stable monitoring system based on blue and red light emitting diodes coupled to a distribution network comprised of optical fibers has been developed for an electromagnetic calorimeter that uses lead tungstate crystals readout with photomult
The MEG detector is designed to test Lepton Flavor Violation in the $mu^+rightarrow e^+gamma$ decay down to a Branching Ratio of a few $10^{-13}$. The decay topology consists in the coincident emission of a monochromatic photon in direction opposite
We performed a detailed study of the timing performance of the LHCb VELO Timepix3 Telescope with a 180 GeV/c mixed hadron beam at the CERN SPS. A twofold method was developed to improve the resolution of single-plane time measurements, resulting in a
The MINERvA experiment is designed to perform precision studies of neutrino-nucleus scattering using $ u_mu$ and ${bar u}_mu$ neutrinos incident at 1-20 GeV in the NuMI beam at Fermilab. This article presents a detailed description of the minerva det
We present the final results from a novel Cherenkov imaging detector called the Focusing DIRC (FDIRC). This detector was designed as a full-scale prototype of the particle identification system for the SuperB experiment [1], and comprises 1/12 of the