ترغب بنشر مسار تعليمي؟ اضغط هنا

Timing performance of the LHCb VELO Timepix3 Telescope

92   0   0.0 ( 0 )
 نشر من قبل Kevin Heijhoff
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We performed a detailed study of the timing performance of the LHCb VELO Timepix3 Telescope with a 180 GeV/c mixed hadron beam at the CERN SPS. A twofold method was developed to improve the resolution of single-plane time measurements, resulting in a more precise overall track time measurement. The first step uses spatial information of reconstructed tracks in combination with the measured signal charge in the sensor to correct for a mixture of different effects: variations in charge carrier drift time; variations in signal induction, which are the result of a non-uniform weighting field in the pixels; and lastly, timewalk in the analog front-end. The second step corrects for systematic timing offsets in Timepix3 that vary from -2 ns to 2 ns. By applying this method, we improved the track time resolution from 438$,pm,$16 ps to 276$,pm,$4 ps.

قيم البحث

اقرأ أيضاً

The LHCb VELO Timepix3 telescope is a silicon pixel tracking system constructed initially to evaluate the performance of LHCb VELO Upgrade prototypes. The telesope consists of eight hybrid pixel silicon sensor planes equipped with the Timepix3 ASIC. The planes provide excellent charge measurement, timestamping and spatial resolution and the system can function at high track rates. This paper describes the construction of the telescope and its data acquisition system and offline reconstruction software. A timing resolution of 350~ps was obtained for reconstructed tracks. A pointing resolution of better than 2~mum was determined for the 180~GeV/c %gevc mixed hadron beam at the CERN SPS. The telescope has been shown to operate at a rate of 5 million particles~unit{s^{-1}cdot cm^{-2}} without a loss in efficiency.
An extensive sensor testing campaign is presented, dedicated to measuring the charge collection properties of prototype candidates for the Vertex Locator (VELO) detector for the upgraded LHCb experiment. The charge collection is measured with sensors exposed to fluences of up to $8 times 10^{15}~1~mathrm{,Mekern -0.1em V}~ mathrm{ ,n_{eq}}~{mathrm{ ,cm}}^{-2}$, as well as with nonirradiated prototypes. The results are discussed, including the influence of different levels of irradiation and bias voltage on the charge collection properties. Charge multiplication is observed on some sensors that were nonuniformly irradiated with 24 GeV protons, to the highest fluence levels. An analysis of the charge collection near the guard ring region is also presented, revealing significant differences between the sensor prototypes. All tested sensor variants succeed in collecting the minimum required charge of 6000 electrons after the exposure to the maximum fluence.
The Large Hadron Collider beauty (LHCb) detector is designed to detect decays of b- and c- hadrons for the study of CP violation and rare decays. At the end of the LHC Run 2, many of the LHCb measurements remained statistically dominated. In order to increase the trigger yield for purely hadronic channels, the hardware trigger will be removed, and the detector will be read out at 40 MHz. This, in combination with the five-fold increase in luminosity, requires radical changes to LHCbs electronics, and, in some cases, the replacement of entire sub-detectors with state-of-the-art detector technologies. The Vertex Locator (VELO) surrounding the interaction region is used to reconstruct the collision points (primary vertices) and decay vertices of long-lived particles (secondary vertices). The upgraded VELO will be composed of 52 modules placed along the beam axis divided into two retractable halves. The modules will each be equipped with 4 silicon hybrid pixel tiles, each read out by 3 VeloPix ASICs. The total output data rate anticipated for the whole detector will be around 1.6 Tbit/s. The highest occupancy ASICs will have pixel hit rates of approximately 900 Mhit/s, with the corresponding output data rate of 15 Gbit/s. The LHCb upgrade detector will be the first detector to read out at the full LHC rate of 40 MHz. The VELO upgrade will utilize the latest detector technologies to read out at this rate while maintaining the required radiation-hard profile and minimizing the detector material.
The performance of the LHCb Muon system and its stability across the full 2010 data taking with LHC running at ps = 7 TeV energy is studied. The optimization of the detector setting and the time calibration performed with the first collisions deliver ed by LHC is described. Particle rates, measured for the wide range of luminosities and beam operation conditions experienced during the run, are compared with the values expected from simulation. The space and time alignment of the detectors, chamber efficiency, time resolution and cluster size are evaluated. The detector performance is found to be as expected from specifications or better. Notably the overall efficiency is well above the design requirements
The Vertex Locator (VELO) is a silicon microstrip detector that surrounds the proton-proton interaction region in the LHCb experiment. The performance of the detector during the first years of its physics operation is reviewed. The system is operated in vacuum, uses a bi-phase CO2 cooling system, and the sensors are moved to 7 mm from the LHC beam for physics data taking. The performance and stability of these characteristic features of the detector are described, and details of the material budget are given. The calibration of the timing and the data processing algorithms that are implemented in FPGAs are described. The system performance is fully characterised. The sensors have a signal to noise ratio of approximately 20 and a best hit resolution of 4 microns is achieved at the optimal track angle. The typical detector occupancy for minimum bias events in standard operating conditions in 2011 is around 0.5%, and the detector has less than 1% of faulty strips. The proximity of the detector to the beam means that the inner regions of the n+-on-n sensors have undergone space-charge sign inversion due to radiation damage. The VELO performance parameters that drive the experiments physics sensitivity are also given. The track finding efficiency of the VELO is typically above 98% and the modules have been aligned to a precision of 1 micron for translations in the plane transverse to the beam. A primary vertex resolution of 13 microns in the transverse plane and 71 microns along the beam axis is achieved for vertices with 25 tracks. An impact parameter resolution of less than 35 microns is achieved for particles with transverse momentum greater than 1 GeV/c.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا