ﻻ يوجد ملخص باللغة العربية
The optical model potentials for nucleon-nucleus elastic scattering at $65$~MeV are calculated for $^{12}$C, $^{16}$O, $^{28}$Si, $^{40}$Ca, $^{56}$Fe, $^{90}$Zr and $^{208}$Pb in first order multiple scattering theory, following the prescription of the spectator expansion, where the only inputs are the free NN potentials, the nuclear densities and the nuclear mean field as derived from microscopic nuclear structure calculations. These potentials are used to predict differential cross sections, analyzing powers and spin rotation functions for neutron and proton scattering at 65 MeV projectile energy and compared with available experimental data.
Background: Effective interactions for elastic nucleon-nucleus scattering from first principles require the use of the same nucleon-nucleon interaction in the structure and reaction calculations, as well as a consistent treatment of the relevant oper
The influence of the energy dependence of the free NN t-matrix on the optical potential of nucleon-nucleus elastic scattering is investigated within the context of a full-folding model based on the impulse approximation. The treatment of the pole str
The sensitivity of nucleon-nucleus elastic scattering observables to the off-shell structure of nucleon-nucleon t-matrices, derived from realistic NN potentials, is investigated within the context of a full-folding model based on the impulse approxim
Background: Calculating microscopic effective interactions (optical potentials) for elastic nucleon-nucleus scattering has already in the past led to a large body of work. For first-order calculations a nucleon-nucleon (textit{NN}) interaction and a
The theory of the elastic scattering of a nucleon from a nucleus is presented in the form of a Spectator Expansion of the optical potential. Particular attention is paid to the treatment of the free projectile$,-,$nucleus propagator when the coupling