ﻻ يوجد ملخص باللغة العربية
The theory of the elastic scattering of a nucleon from a nucleus is presented in the form of a Spectator Expansion of the optical potential. Particular attention is paid to the treatment of the free projectile$,-,$nucleus propagator when the coupling of the struck target nucleon to the residual target must be taken into consideration. First order calculations within this framework are shown for neutron total cross-sections and for proton scattering for a number of target nuclides at a variety of energies. The calculated values of these observables are in very good agreement with measurement.
The sensitivity of nucleon-nucleus elastic scattering observables to the off-shell structure of nucleon-nucleon t-matrices, derived from realistic NN potentials, is investigated within the context of a full-folding model based on the impulse approxim
Background: Calculating microscopic effective interactions (optical potentials) for elastic nucleon-nucleus scattering has already in the past led to a large body of work. For first-order calculations a nucleon-nucleon (textit{NN}) interaction and a
Background: Effective interactions for elastic nucleon-nucleus scattering from first principles require the use of the same nucleon-nucleon interaction in the structure and reaction calculations, as well as a consistent treatment of the relevant oper
The optical model potentials for nucleon-nucleus elastic scattering at $65$~MeV are calculated for $^{12}$C, $^{16}$O, $^{28}$Si, $^{40}$Ca, $^{56}$Fe, $^{90}$Zr and $^{208}$Pb in first order multiple scattering theory, following the prescription of
The influence of the energy dependence of the free NN t-matrix on the optical potential of nucleon-nucleus elastic scattering is investigated within the context of a full-folding model based on the impulse approximation. The treatment of the pole str