ﻻ يوجد ملخص باللغة العربية
The properties of spin polarized neutron matter are studied both at zero and finite temperature using the D1 and the D1P parameterizations of the Gogny interaction. The results show two different behaviors: whereas the D1P force exhibits a ferromagnetic transition at a density of $rho_c sim 1.31$ fm$^{-3}$ whose onset increases with temperature, no sign of such a transition is found for D1 at any density and temperature, in agreement with recent microscopic calculations.
The properties of spin polarized neutron matter are studied both at zero and finite temperature using Skyrme-type interactions. It is shown that the critical density at which ferromagnetism takes place decreases with temperature. This unexpected beha
Recently, a new parameterization of the Gogny interaction suitable for astrophysical applications, named D1M*, has been presented. We investigate the possible existence of spurious finite-size instabilities of this new Gogny force by repeating a stud
A fully-antisymmetrized random phase approximation calculation employing the continued fraction technique is performed to study nuclear matter response functions with the finite range Gogny force. The most commonly used parameter sets of this force,
We study the properties of $K$ and $bar K$ mesons in nuclear matter at finite temperature from a chiral unitary approach in coupled channels which incorporates the $s$- and p-waves of the kaon-nucleon interaction. The in-medium solution accounts for
The equilibrium distributions of the different pasta geometries and their linear sizes are calculated from the mean field Gibbs energy functional in symmetric nuclear matter at finite temperature. The average sizes and shapes coincide approximately w