ﻻ يوجد ملخص باللغة العربية
The equilibrium distributions of the different pasta geometries and their linear sizes are calculated from the mean field Gibbs energy functional in symmetric nuclear matter at finite temperature. The average sizes and shapes coincide approximately with the ones predicted by a standard pasta calculation in the coexisting phase approximation, but fluctuations are additionally calculated and seen to increase with temperature and baryonic density. The different pasta shapes are shown to coexist in a wide domain of density and temperature, in qualitative agreement with the findings of large scale molecular dynamics simulations, but with a much less expensive computational cost.
Baryonic matter close to the saturation density is very likely to present complex inhomogeneous structures collectively known under the name of pasta phase. At finite temperature, the different geometric structures are expected to coexist, with poten
We study the properties of $K$ and $bar K$ mesons in nuclear matter at finite temperature from a chiral unitary approach in coupled channels which incorporates the $s$- and p-waves of the kaon-nucleon interaction. The in-medium solution accounts for
Isospin and density waves in neutral neutron-proton-electron (npe) matter are studied within a relativistic mean-field hadron model at finite temperature with the inclusion of the electromagnetic field. The dispersion relation is calculated and the c
The properties of spin polarized neutron matter are studied both at zero and finite temperature using the D1 and the D1P parameterizations of the Gogny interaction. The results show two different behaviors: whereas the D1P force exhibits a ferromagne
The properties of spin polarized neutron matter are studied both at zero and finite temperature using Skyrme-type interactions. It is shown that the critical density at which ferromagnetism takes place decreases with temperature. This unexpected beha