ترغب بنشر مسار تعليمي؟ اضغط هنا

Mott Effect and J/Psi Dissociation at the Quark-Hadron Phase Transition

293   0   0.0 ( 0 )
 نشر من قبل David Blaschke
 تاريخ النشر 2002
  مجال البحث
والبحث باللغة English
 تأليف D. Blaschke




اسأل ChatGPT حول البحث

We investigate the in-medium modification of pseudoscalar and vector mesons in a QCD motivated chiral quark model by solving the Dyson-Schwinger equations for quarks and mesons at finite temperature for a wide mass range of meson masses, from light (pi, rho) to open-charm (D, D*) states. At the chiral / deconfinement phase transition, the quark-antiquark bound states enter the continuum of unbound states and become broad resonances (the hadronic Mott effect). We calculate the in-medium cross sections for charmonium dissociation due to collisions with light hadrons in a chiral Lagrangian approach, and show that the D and D* meson spectral broadening lowers the threshold for charmonium dissociation by pi and rho meson impact. This leads to a step-like enhancement in the reaction rate. We suggest that this mechanism for enhanced charmonium dissociation may be the physical mechanism underlying the anomalous J/Psi suppression observed by NA50.

قيم البحث

اقرأ أيضاً

322 - G.Y.Shao , M.Di Toro , B.Liu 2011
The two-Equation of State (EoS) model is used to describe the hadron-quark phase transition in asymmetric matter formed at high density in heavy-ion collisions. For the quark phase, the three-flavor Nambu--Jona-Lasinio (NJL) effective theory is used to investigate the influence of dynamical quark mass effects on the phase transition. At variance to the MIT-Bag results, with fixed current quark masses, the main important effect of the chiral dynamics is the appearance of an End-Point for the coexistence zone. We show that a first order hadron-quark phase transition may take place in the region T=(50-80)MeV and rho_B=(2-4)rho_0, which is possible to be probed in the new planned facilities, such as FAIR at GSI-Darmstadt and NICA at JINR-Dubna. From isospin properties of the mixed phase somepossible signals are suggested. The importance of chiral symmetry and dynamical quark mass on the hadron-quark phase transition is stressed. The difficulty of an exact location of Critical-End-Point comes from its appearance in a region of competition between chiral symmetry breaking and confinement, where our knowledge of effective QCD theories is still rather uncertain.
188 - K. Tsushima 2000
We discuss the effect of changes in meson properties in a nuclear medium on physical observables, notably, $J/Psi$ dissociation on pion and $rho$ meson comovers in relativistic heavy ion collisions, and the prediction of the $omega$-, $eta$- and $eta$-nuclear bound states.
We discuss the isospin effect on the possible phase transition from hadronic to quark matter at high baryon density and finite temperatures. The two-Equation of State (Two-EoS) model is adopted to describe the hadron-quark phase transition in dense m atter formed in heavy-ion collisions. For the hadron sector we use Relativistic Mean Field (RMF) effective models, already tested on heavy ion collision (HIC). For the quark phase we consider various effective models, the MIT-Bag static picture, the Nambu--Jona-Lasinio (NJL) approach with chiral dynamics and finally the NJL coupled to the Polyakov-loop field (PNJL), which includes both chiral and (de)confinement dynamics. The idea is to extract mixed phase properties which appear robust with respect to the model differences. In particular we focus on the phase transitions of isospin asymmetric matter, with two main results: i) an earlier transition to a mixed hadron-quark phase, at lower baryon density/chemical potential with respect to symmetric matter; ii) an Isospin Distillation to the quark component of the mixed phase, with predicted effects on the final hadron production. Possible observation signals are suggested to probe in heavy-ion collision experiments at intermediate energies, in the range of the NICA program.
The mass spectra and binding radii of heavy quark bound states are studied on the basis of the reduced Bethe-Salpeter equation. The critical values of screening masses for $cbar{c}$ and $bbar{b}$ bound states at a finite temperature are obtained and compared with the previous results given by non-relativistic models.
91 - Charles Gale , 1999
We show that the distributions of outgoing protons and charged hadrons in high energy proton-nucleus collisions are described rather well by a linear extrapolation from proton-proton collisions. The only adjustable parameter required is the shift in rapidity of a produced charged meson when it encounters a target nucleon. Its fitted value is 0.16. Next, we apply this linear extrapolation to precisely measured Drell-Yan cross sections for 800 GeV protons incident on a variety of nuclear targets which exhibit a deviation from linear scaling in the atomic number A. We show that this deviation can be accounted for by energy degradation of the proton as it passes through the nucleus if account is taken of the time delay of particle production due to quantum coherence. We infer an average proper coherence time of 0.4 +/- 0.1 fm/c, corresponding to a coherence path length of 8 +/- 2 fm in the rest frame of the nucleus. Finally, we apply the linear extrapolation to measured J/Psi production cross sections for 200 and 450 GeV/c protons incident on a variety of nuclear targets. Our analysis takes into account energy loss of the beam proton, the time delay of particle production due to quantum coherence, and absorption of the J/Psi on nucleons. The best representation is obtained for a coherence time of 0.5 fm/c, which is consistent with Drell-Yan production, and an absorption cross section of 3.6 mb, which is consistent with the value deduced from photoproduction of the J/Psi on nuclear targets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا