ﻻ يوجد ملخص باللغة العربية
We discuss the isospin effect on the possible phase transition from hadronic to quark matter at high baryon density and finite temperatures. The two-Equation of State (Two-EoS) model is adopted to describe the hadron-quark phase transition in dense matter formed in heavy-ion collisions. For the hadron sector we use Relativistic Mean Field (RMF) effective models, already tested on heavy ion collision (HIC). For the quark phase we consider various effective models, the MIT-Bag static picture, the Nambu--Jona-Lasinio (NJL) approach with chiral dynamics and finally the NJL coupled to the Polyakov-loop field (PNJL), which includes both chiral and (de)confinement dynamics. The idea is to extract mixed phase properties which appear robust with respect to the model differences. In particular we focus on the phase transitions of isospin asymmetric matter, with two main results: i) an earlier transition to a mixed hadron-quark phase, at lower baryon density/chemical potential with respect to symmetric matter; ii) an Isospin Distillation to the quark component of the mixed phase, with predicted effects on the final hadron production. Possible observation signals are suggested to probe in heavy-ion collision experiments at intermediate energies, in the range of the NICA program.
Physics aspects of a JINR project to reach the planned 5A GeV energy for the Au and U beams and to increase the bombarding energy up to 10A GeV are discussed. The project aims to search for a possible formation of a strongly interacting mixed quark-h
In this work we investigate the effect a crystalline quark-hadron mixed phase can have on the neutrino emissivity from the cores of neutron stars. To this end we use relativistic mean-field equations of state to model hadronic matter and a nonlocal e
We investigate the in-medium modification of pseudoscalar and vector mesons in a QCD motivated chiral quark model by solving the Dyson-Schwinger equations for quarks and mesons at finite temperature for a wide mass range of meson masses, from light (
High energy Heavy Ion Collisions (HIC) are studied in order to access nuclear matter properties at high density. Particular attention is paid to the selection of observables sensitive to the poorly known symmetry energy at high baryon density, of lar
Here we present several remarkable irregularities at chemical freeze-out which are found using an advanced version of the hadron resonance gas model. The most prominent of them are the sharp peak of the trace anomaly existing at chemical freeze-out a