ﻻ يوجد ملخص باللغة العربية
In this letter, we show that the non-linearitites of large amplitude motions in atomic nuclei induce giant quadrupole and monopole vibrations. As a consequence, the main source of anharmonicity is the coupling with configurations including one of these two giant resonances on top of any state. Two-phonon energies are often lowered by one or two MeV because of the large matrix elements with such three phonon configurations. These effects are studied in two nuclei, 40Ca and 208Pb.
Evidence of strong coupling of quasiparticle excitations with gamma-vibration is shown to occur in transitional nuclei. High-spin band structures in [166,168,170,172]Er are studied by employing the recently developed multi-quasiparticle triaxial proj
We present a new analysis of the pairing vibrations around 56Ni, with emphasis on odd-odd nuclei. This analysis of the experimental excitation energies is based on the subtraction of average properties that include the full symmetry energy together w
In addition to shape oscillations, low-energy excitation spectra of deformed nuclei are also influenced by pairing vibrations. The simultaneous description of these collective modes and their coupling has been a long-standing problem in nuclear struc
On the basis of time-dependent mean-field picture, we discuss the nature of the low-frequency quadrupole vibrations from small-amplitude to large-amplitude regimes as representatives of surface shape vibrations of a superfluid droplet (nucleus). We c
The model, introduced in a previous paper, for the description of the octupole and quadrupole degrees of freedom in conditions close to the axial symmetry, is used to describe the negative-parity band based on the first octupole vibrational state in