ﻻ يوجد ملخص باللغة العربية
An approach to the Generator Coordinate Method (GCM) using Skyrme-type effective forces and Woods-Saxon construction potential is applied to calculate the single-particle proton and neutron overlap functions in $^{40}$Ca. The relationship between the bound-state overlap functions and the one-body density matrix has been used. These overlap functions are applied to calculate the cross sections of one-nucleon removal reactions such as ($e,ep$), ($gamma,p$) and ($p,d$) on $^{40}$Ca on the same theoretical footing. A consistent description of data for the different reactions is achieved. The shapes of the experimental cross sections for transitions to the $3/2^{+}$ ground state and the first $1/2^{+}$ excited state of the residual nuclei are well reproduced by the overlap functions obtained within the GCM. An additional spectroscopic factor accounting for correlations not included in the overlap function must be applied to the calculated results to reproduce the size of the experimental cross sections.
Fusion data for $^{40}$Ca+$^{96}$Zr are analyzed by coupled-channels calculations that are based on a standard Woods-Saxon potential and include couplings to multiphonon excitations and transfer channels. The couplings to multiphonon excitations are
Background: The isospin mixing is an interesting feature of atomic nuclei. It plays a crucial role in astrophysical nuclear reactions. However, it is not straightforward for variational nuclear structure models to describe it. Purpose: We propose a t
One-nucleon removal reactions at or above the Fermi energy are important tools to explore the single-particle structure of exotic nuclei. Experimental data must be compared with calculations to extract structure information, evaluate correlation effe
It has been known that the time-dependent Hartree-Fock (TDHF) method, or the time-dependent density functional theory (TDDFT), fails to describe many-body quantum tunneling. We overcome this problem by superposing a few time-dependent Slater determin
We study the feasibility of applying the Generator Coordinate Method (GCM) of self-consistent mean-field theory to calculate decay widths of composite particles to composite-particle final states. The main question is how well the GCM can approximate