ﻻ يوجد ملخص باللغة العربية
One-nucleon removal reactions at or above the Fermi energy are important tools to explore the single-particle structure of exotic nuclei. Experimental data must be compared with calculations to extract structure information, evaluate correlation effects in nuclei or determine reaction rates for nuclear astrophysics. However, there is insufficient knowledge to calculate accurately the cross sections for these reactions. We evaluate the contributions of the final state interaction (FSI) and of the medium modifications of the nucleon-nucleon interactions and obtain the shapes and magnitudes of momentum distributions. Such effects have been often neglected in the literature. Calculations for reactions at energies 35 - 1000 MeV/nucleon are reported and compared to published data. For consistency, the state-of-the-art eikonal method for stripping and diffraction dissociation is used. We find that the two effects are important and their relative contributions vary with the energy and with the atomic and mass number of the projectile involved. These two often neglected effects modify considerably the one-nucleon removal cross sections. As expected, the effect are largest at lower energies, around 50 MeV/nucleon and on heavy targets.
An approach to the Generator Coordinate Method (GCM) using Skyrme-type effective forces and Woods-Saxon construction potential is applied to calculate the single-particle proton and neutron overlap functions in $^{40}$Ca. The relationship between the
We develop a fully relativistic DWIA model for photonuclear reactions using the relativistic mean field theory for the bound state and the Pauli reduction of the scattering state which is calculated from a relativistic optical potential. Results for
We extend our approach to incorporate the proton-proton (pp) Coulomb force into the three-nucleon (3N) momentum-space Faddeev calculations of elastic proton-deuteron (pd) scattering and breakup to the case when also a three-nucleon force (3NF) is act
The eikonal reaction theory (ERT) proposed lately is a method of calculating one-neutron removal reactions at intermediate incident energies in which Coulomb breakup is treated accurately with the continuum discretized coupled-channels method. ERT is
We provide a summary of new developments in the area of direct reaction theory with a particular focus on one-nucleon transfer reactions. We provide a status of the methods available for describing (d,p) reactions. We discuss the effects of nonlocali