ترغب بنشر مسار تعليمي؟ اضغط هنا

Direct photons in d+Au and p+p collisions

44   0   0.0 ( 0 )
 نشر من قبل Martijn Russcher
 تاريخ النشر 2007
  مجال البحث
والبحث باللغة English
 تأليف M.J. Russcher




اسأل ChatGPT حول البحث

Results are presented from an ongoing analysis of direct photon production with the STAR experiment at RHIC. The direct photon measurement in d+Au collisions and the neutral pion spectrum in p+p collisions are found to be in agreement with NLO pQCD calculations.



قيم البحث

اقرأ أيضاً

70 - B. Sahlmueller 2006
The PHENIX experiment has measured direct photons at $sqrt{s_{NN}}$ = 200 GeV in $p+p$, $d$+Au and Au+Au collisions. For $p_{T}$ $<$ 4 GeV/$c$, the internal conversion into $e^{+}e^{-}$ pairs has been used to measure the direct photons in Au+Au.
181 - Debasish Das 2008
The study of quarkonium production in relativistic heavy ion collisions provides insight into the properties of the produced medium. The lattice studies show a sequential suppression of quarkonia states when compared to normal nuclear matter; which f urther affirms that a full spectroscopy including bottomonium can provide us a better thermometer for the matter produced under extreme conditions in relativistic heavy ion collisions. With the completion of the STAR Electromagnetic Calorimeter and with the increased luminosity provided by RHIC in Run 6 and 7, the study of $Upsilon$ production via the di-electron channel becomes possible. We present the results on $Upsilon$ measurements in p+p collisions (from Run 6) along with the first results from Au+Au collisions (in Run 7) at $sqrt{s_{rm{NN}}} = 200$ GeV from the STAR experiment.
The standard model (SM) of particle physics is spectacularly successful, yet the measured value of the muon anomalous magnetic moment $(g-2)_mu$ deviates from SM calculations by 3.6$sigma$. Several theoretical models attribute this to the existence o f a dark photon, an additional U(1) gauge boson, which is weakly coupled to ordinary photons. The PHENIX experiment at the Relativistic Heavy Ion Collider has searched for a dark photon, $U$, in $pi^0,eta rightarrow gamma e^+e^-$ decays and obtained upper limits of $mathcal{O}(2times10^{-6})$ on $U$-$gamma$ mixing at 90% CL for the mass range $30<m_U<90$ MeV/$c^2$. Combined with other experimental limits, the remaining region in the $U$-$gamma$ mixing parameter space that can explain the $(g-2)_mu$ deviation from its SM value is nearly completely excluded at the 90% confidence level, with only a small region of $29<m_U<32$ MeV/$c^2$ remaining.
The PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC) has measured omega meson production via leptonic and hadronic decay channels in p+p, d+Au, Cu+Cu, and Au+Au collisions at sqrt(s_NN) = 200 GeV. The invariant transverse momentum spec tra measured in different decay modes give consistent results. Measurements in the hadronic decay channel in Cu+Cu and Au+Au collisions show that omega production has a suppression pattern at high transverse momentum, similar to that of pi^0 and eta in central collisions, but no suppression is observed in peripheral collisions. The nuclear modification factors, R_AA, are consistent in Cu+Cu and Au+Au collisions at similar numbers of participant nucleons.
174 - Levente Molnar 2007
In this proceedings we present STAR measurements of two particle azimuthal correlations between trigger particles at mid-rapidity ($|eta|<$ 1) and associated particles at forward rapidities (2.7 $<|eta|<$ 3.9) in p+p, d+Au and Au+Au collisions at $sq rt{s_{NN}} $= 200 GeV. Two particle azimuthal correlations between a mid-rapidity trigger particle and forward-rapidity associated particles preferably probe large-x quarks scattered off small-x gluons in RHIC collisions. Comparison of the separate d- and Au-side measurements in d+Au collisions may potentially probe gluon saturation and the presence of Color Glass Condensate. In Au+Au collisions quark energy loss can be probed at large rapidities, which may be different from gluon energy loss measured at mid-rapidity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا