ﻻ يوجد ملخص باللغة العربية
The standard model (SM) of particle physics is spectacularly successful, yet the measured value of the muon anomalous magnetic moment $(g-2)_mu$ deviates from SM calculations by 3.6$sigma$. Several theoretical models attribute this to the existence of a dark photon, an additional U(1) gauge boson, which is weakly coupled to ordinary photons. The PHENIX experiment at the Relativistic Heavy Ion Collider has searched for a dark photon, $U$, in $pi^0,eta rightarrow gamma e^+e^-$ decays and obtained upper limits of $mathcal{O}(2times10^{-6})$ on $U$-$gamma$ mixing at 90% CL for the mass range $30<m_U<90$ MeV/$c^2$. Combined with other experimental limits, the remaining region in the $U$-$gamma$ mixing parameter space that can explain the $(g-2)_mu$ deviation from its SM value is nearly completely excluded at the 90% confidence level, with only a small region of $29<m_U<32$ MeV/$c^2$ remaining.
The PHENIX experiment has measured $phi$ meson production in $d$$+$Au collisions at $sqrt{s_{_{NN}}}=200$ GeV using the dimuon and dielectron decay channels. The $phi$ meson is measured in the forward (backward) $d$-going (Au-going) direction, $1.2<y
We report $e^pm-mu^mp$ pair yield from charm decay measured between midrapidity electrons ($|eta|<0.35$ and $p_T>0.5$ GeV/$c$) and forward rapidity muons ($1.4<eta<2.1$ and $p_T>1.0$ GeV/$c$) as a function of $Deltaphi$ in both $p$$+$$p$ and in $d$+A
The PHENIX experiment has measured direct photons at $sqrt{s_{NN}}$ = 200 GeV in $p+p$, $d$+Au and Au+Au collisions. For $p_{T}$ $<$ 4 GeV/$c$, the internal conversion into $e^{+}e^{-}$ pairs has been used to measure the direct photons in Au+Au.
Azimuthal angular correlations of charged hadrons with respect to the axis of a reconstructed (trigger) jet in Au+Au and p+p collisions at $sqrt{s_{text{NN}}} = 200 text{GeV}$ in STAR are presented. The trigger jet population in Au+Au collisions is b
We report the measurements of $Sigma (1385)$ and $Lambda (1520)$ production in $p+p$ and $Au+Au$ collisions at $sqrt{s_{NN}} = 200$ GeV from the STAR collaboration. The yields and the $p_{T}$ spectra are presented and discussed in terms of chemical a