ﻻ يوجد ملخص باللغة العربية
The vector analyzing power has been measured for the elastic scattering of neutron-rich 6He from polarized protons at 71 MeV/nucleon making use of a newly constructed solid polarized proton target operated in a low magnetic field and at high temperature. Two approaches based on local one-body potentials were applied to investigate the spin-orbit interaction between a proton and a 6He nucleus. An optical model analysis revealed that the spin-orbit potential for 6He is characterized by a shallow and long-ranged shape compared with the global systematics of stable nuclei. A semimicroscopic analysis with a alpha+n+n cluster folding model suggests that the interaction between a proton and the alpha core is essentially important in describing the p+6He elastic scattering. The data are also compared with fully microscopic analyses using non-local optical potentials based on nucleon-nucleon g-matrices.
Vector analyzing power for the proton-6He elastic scattering at 71 MeV/nucleon has been measured for the first time, with a newly developed polarized proton solid target working at low magnetic field of 0.09 T. The results are found to be incompatibl
We apply the cluster-folding (CF) model for $vec{p}+^{6}$He scattering at 200 MeV, where the potential between $vec{p}$ and $^{4}$He is fitted to data on $vec{p}+^{4}$He scattering at 200 MeV. For $vec{p}+^{6}$He scattering at 200 MeV, the CF model r
The neutron density distributions and neutron skin thicknesses in $^{40,48}$Ca are determined from the angular distributions of the cross sections and analyzing powers of polarized proton elastic scattering at $E_p = 295$ MeV. Based on the framework
We present measurements of differential cross sections and the analyzing powers A_y, iT11, T20, T21, and T22 at E_c.m.=431.3 keV. In addition, an excitation function of iT11(theta_c.m.=87.8 degrees) for 431.3 <= E_c.m. <= 2000 keV is presented. These
Background: Double charge exchange (DCE) nuclear reactions have recently attracted much interest as tools to provide experimentally driven information about nuclear matrix elements of interest in the context of neutrinoless double-beta decay. In this