ترغب بنشر مسار تعليمي؟ اضغط هنا

DDbar Correlations probing Thermalization in High-Energy Nuclear Collisions

110   0   0.0 ( 0 )
 نشر من قبل Kai O. Schweda
 تاريخ النشر 2006
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose to measure azimuthal correlations of heavy-flavor hadrons to address the status of thermalization at the partonic stage of light quarks and gluons in high-energy nuclear collisions. In particular, we show that hadronic interactions at the late stage cannot significantly disturb the initial back-to-back azimuthal correlations of DDbar pairs. Thus, a decrease or the complete absence of these initial correlations does indicate frequent interactions of heavy-flavor quarks and also light partons in the partonic stage, which are essential for the early thermalization of light partons.

قيم البحث

اقرأ أيضاً

The STAR Collaboration at RHIC presents a systematic study of high transverse momentum charged di-hadron correlations at small azimuthal pair separation dphino, in d+Au and central Au+Au collisions at $rts = 200$ GeV. Significant correlated yield for pairs with large longitudinal separation deta is observed in central Au+Au, in contrast to d+Au collisions. The associated yield distribution in detano$times$dphi can be decomposed into a narrow jet-like peak at small angular separation which has a similar shape to that found in d+Au collisions, and a component which is narrow in dphi and textcolor{black}{depends only weakly on} $deta$, the ridge. Using two systematically independent analyses, textcolor{black}{finite ridge yield} is found to persist for trigger $pt > 6$ GeVc, indicating that it is correlated with jet production. The transverse momentum spectrum of hadrons comprising the ridge is found to be similar to that of bulk particle production in the measured range ($2 < pt < 4 GeVc$).
This is a review of the theoretical background, experimental techniques, and phenomenology of what is called the Glauber Model in relativistic heavy ion physics. This model is used to calculate geometric quantities, which are typically expressed as i mpact parameter (b), number of participating nucleons (N_part) and number of binary nucleon-nucleon collisions (N_coll). A brief history of the original Glauber model is presented, with emphasis on its development into the purely classical, geometric picture that is used for present-day data analyses. Distinctions are made between the optical limit and Monte Carlo approaches, which are often used interchangably but have some essential differences in particular contexts. The methods used by the four RHIC experiments are compared and contrasted, although the end results are reassuringly similar for the various geometric observables. Finally, several important RHIC measurements are highlighted that rely on geometric quantities, estimated from Glauber calculations, to draw insight from experimental observables. The status and future of Glauber modeling in the next generation of heavy ion physics studies is briefly discussed.
60 - X. Zhu , M. Bleicher , S.L. Huang 2006
We propose to measure azimuthal correlations of heavy-flavor hadrons to address the status of thermalization at the partonic stage of light quarks and gluons in high-energy nuclear collisions. In particular, we show that hadronic interactions at the late stage cannot significantly disturb the initial back-to-back azimuthal correlations of DDbar pairs. Thus, a decrease or the complete absence of these initial correlations does indicate frequent interactions of heavy-flavor quarks and also light partons in the partonic stage, which are essential for the early thermalization of light partons.
103 - Yogiro Hama , Takeshi Kodama , 2020
In this paper, we give an account of the peripheral-tube model, which has been developed to give an intuitive and dynamical description of the so-called ridge effect in two-particle correlations in high-energy nuclear collisions. Starting from a real istic event-by-event fluctuating hydrodynamical model calculation, we first show the emergence of ridge + shoulders in the so-called two-particle long-range correlations, reproducing the data. In contrast to the commonly used geometric picture of the origin of the anisotropic flow, we can explain such a structure dynamically in terms of the presence of high energy-density peripheral tubes in the initial conditions. These tubes violently explode and deflect the near radial flow coming from the interior of the hot matter, which in turn produces a two-ridge structure in single-particle distribution, with approximately two units opening in azimuth. When computing the two-particle correlation, this will result in characteristic three-ridge structure, with a high near-side ridge and two symmetric lower away-side ridges or shoulders. Several anisotropic flows, necessary to producing ridge + shoulder structure, appear naturally in this dynamical description. Using this simple idea, we can understand several related phenomena, such as centrality dependence and trigger-angle dependence.
We consider the SU(2) Glasma with gaussian fluctuations and study its evolution by means of classical Yang-Mills equations solved numerically on a lattice. Neglecting in this first study the longitudinal expansion we follow the evolution of the press ures of the system and compute the effect of the fluctuations in the early stage up to $tapprox 2$ fm/c, that is the time range in which the Glasma is relevant for high energy collisions. We measure the ratio of the longitudinal over the transverse pressure, $P_L/P_T$, and we find that unless the fluctuations carry a substantial amount of the energy density at the initial time, they do not change significantly the evolution of $P_L/P_T$ in the early stage, and that the system remains quite anisotropic. We also measure the longitudinal fields correlators both in the transverse plane and along the longitudinal direction: while at initial time fields appear to be anticorrelated in the transverse plane, this anticorrelation disappears in the very early stage and the correlation length in the transverse plane increases; on the other hand, we find that the longitudinal correlator decreases for a small longitudinal separation while being approximately constant for larger separation, which we interpret as a partial loss of longitudinal correlation induced by the dynamics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا