ترغب بنشر مسار تعليمي؟ اضغط هنا

Beta decay of 115-In to the first excited level of 115-Sn: Potential outcome for neutrino mass

62   0   0.0 ( 0 )
 نشر من قبل Vladimir Tretyak
 تاريخ النشر 2005
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent observation of beta decay of 115-In to the first excited level of 115-Sn with an extremely low Q_beta value (Q_beta ~ 1 keV) could be used to set a limit on neutrino mass. To give restriction potentially competitive with those extracted from experiments with 3-H (~2 eV) and 187-Re (~15 eV), atomic mass difference between 115-In and 115-Sn and energy of the first 115-Sn level should be remeasured with higher accuracy (possibly of the order of ~1 eV).



قيم البحث

اقرأ أيضاً

The nuclear level density of $^{115}$Sn has been measured in an excitation energy range of $sim $2 - 9 MeV using the experimental neutron evaporation spectra from the $^{115}$In($p,n$)$^{115}$Sn reaction. The experimental level densities were compare d with the microscopic Hartree-Fock BCS (HFBCS), Hartree-Fock-Bogoliubov plus combinatorial (HFB+C), and an exact pairing plus independent particle model (EP+IPM) calculations. It is observed that the EP+IPM provides the most accurate description of the experimental data. The thermal properties (entropy and temperature) of $^{115}$Sn have been investigated from the measured level densities. The experimental temperature profile as well as the calculated heat capacity show distinct signatures of a transition from the strongly-paired nucleonic phase to the weakly paired one in this nucleus.
The double beta decay of $^{150}$Nd to the first excited 0$^+$ level of $^{150}$Sm ($E_{exc}$ = 740.5 keV) has been investigated with the help of the ultra-low-background setup consisting of four HP Ge (high-purity germanium) detectors (${approx}$ 22 5 cm$^3$ volume each one) at the Gran Sasso underground laboratory of INFN (Italy). A highly purified 2.381-kg sample of neodymium oxide (Nd$_2$O$_3$) was used as a source of ${gamma}$ quanta expected in the decays. Gamma quanta with energies 334.0 keV and 406.5 keV emitted after deexcitation of the $0_1^+$ 740.5 keV level of $^{150}$Sm are observed in the coincidence spectra accumulated over 16375 h. The half-life relatively to the two neutrino double beta decay $^{150}$Nd $rightarrow$ $^{150}$Sm(0$_1^+$) is measured as $T_{1/2} = [4.7_{-1.9}^{+4.1}text{(stat)} {pm} 0.5text{(syst)}] {times} 10^{19} y$, in agreement with results of previous experiments.
A recent high-resolution $alpha$, $X$-ray, and $gamma$-ray coincidence-spectroscopy experiment offered first glimpse of excitation schemes of isotopes along $alpha$-decay chains of $Z=115$. To understand these observations and to make predictions abo ut shell structure of superheavy nuclei below $^{288}115$, we employ two complementary mean-field models: self-consistent Skyrme Energy Density Functional approach and the macroscopic-microscopic Nilsson model. We discuss the spectroscopic information carried by the new data. In particular, candidates for the experimentally observed $E1$ transitions in $^{276}$Mt are proposed. We find that the presence and nature of low-energy $E1$ transitions in well-deformed nuclei around $Z=110, N=168$ strongly depends on the strength of the spin-orbit coupling; hence, it provides an excellent constraint on theoretical models of superheavy nuclei. To clarify competing theoretical scenarios, an experimental search for $E1$ transitions in odd-$A$ systems $^{275,277}$Mt, $^{275}$Hs, and $^{277}$Ds is strongly recommended.
Double-beta decay is a rare nuclear process in which two neutrons in the nucleus are converted to two protons with the emission of two electrons and two electron anti-neutrinos. We measured the half life of the two-neutrino double-beta decay of $^{15 0}$Nd to excited final states of $^{150}$Sm by detecting the de-excitation gamma rays of the daughter nucleus. This study yields the first detection of the coincidence gamma rays from the 0$^+_1$ excited state of $^{150}$Sm. These gamma rays have energies of 333.97 keV and 406.52 keV, and are emitted in coincidence through a 0$^+_1rightarrow$2$^+_1rightarrow$0$^+_{gs}$ transition. The enriched Nd$_2$O$_3$ sample consisted of 40.13 g $^{150}$Nd and was observed for 642.8 days at the Kimballton Underground Research Facility, producing 21.6 net events in the region of interest. This count rate gives a half life of $T_{1/2}=(1.07^{+0.45}_{-0.25}(stat)pm0.07(syst.))times 10^{20}$ years. The effective nuclear matrix element was found to be 0.0465$^{+0.0098}_{-0.0054}$. Finally, lower limits were obtained for decays to higher excited final states. Our half-life measurement agrees within uncertainties with another recent measurement in which no coincidence was employed. Our nuclear matrix element calculation may have an impact on a recent neutrinoless double-beta decay nuclear matrix element calculation which implies the decay to the first excited state in $^{150}$Sm is favored over that to the ground state.
For r-process nucleosynthesis the beta decay rates for a number of neutron-rich intermediate heavy nuclei are calculated. The model for the beta strength function is able to reproduce the observed half~lives quite well.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا