ﻻ يوجد ملخص باللغة العربية
Recent observation of beta decay of 115-In to the first excited level of 115-Sn with an extremely low Q_beta value (Q_beta ~ 1 keV) could be used to set a limit on neutrino mass. To give restriction potentially competitive with those extracted from experiments with 3-H (~2 eV) and 187-Re (~15 eV), atomic mass difference between 115-In and 115-Sn and energy of the first 115-Sn level should be remeasured with higher accuracy (possibly of the order of ~1 eV).
The nuclear level density of $^{115}$Sn has been measured in an excitation energy range of $sim $2 - 9 MeV using the experimental neutron evaporation spectra from the $^{115}$In($p,n$)$^{115}$Sn reaction. The experimental level densities were compare
The double beta decay of $^{150}$Nd to the first excited 0$^+$ level of $^{150}$Sm ($E_{exc}$ = 740.5 keV) has been investigated with the help of the ultra-low-background setup consisting of four HP Ge (high-purity germanium) detectors (${approx}$ 22
A recent high-resolution $alpha$, $X$-ray, and $gamma$-ray coincidence-spectroscopy experiment offered first glimpse of excitation schemes of isotopes along $alpha$-decay chains of $Z=115$. To understand these observations and to make predictions abo
Double-beta decay is a rare nuclear process in which two neutrons in the nucleus are converted to two protons with the emission of two electrons and two electron anti-neutrinos. We measured the half life of the two-neutrino double-beta decay of $^{15
For r-process nucleosynthesis the beta decay rates for a number of neutron-rich intermediate heavy nuclei are calculated. The model for the beta strength function is able to reproduce the observed half~lives quite well.