ﻻ يوجد ملخص باللغة العربية
Double-beta decay is a rare nuclear process in which two neutrons in the nucleus are converted to two protons with the emission of two electrons and two electron anti-neutrinos. We measured the half life of the two-neutrino double-beta decay of $^{150}$Nd to excited final states of $^{150}$Sm by detecting the de-excitation gamma rays of the daughter nucleus. This study yields the first detection of the coincidence gamma rays from the 0$^+_1$ excited state of $^{150}$Sm. These gamma rays have energies of 333.97 keV and 406.52 keV, and are emitted in coincidence through a 0$^+_1rightarrow$2$^+_1rightarrow$0$^+_{gs}$ transition. The enriched Nd$_2$O$_3$ sample consisted of 40.13 g $^{150}$Nd and was observed for 642.8 days at the Kimballton Underground Research Facility, producing 21.6 net events in the region of interest. This count rate gives a half life of $T_{1/2}=(1.07^{+0.45}_{-0.25}(stat)pm0.07(syst.))times 10^{20}$ years. The effective nuclear matrix element was found to be 0.0465$^{+0.0098}_{-0.0054}$. Finally, lower limits were obtained for decays to higher excited final states. Our half-life measurement agrees within uncertainties with another recent measurement in which no coincidence was employed. Our nuclear matrix element calculation may have an impact on a recent neutrinoless double-beta decay nuclear matrix element calculation which implies the decay to the first excited state in $^{150}$Sm is favored over that to the ground state.
The double beta decay of $^{150}$Nd to the first excited 0$^+$ level of $^{150}$Sm ($E_{exc}$ = 740.5 keV) has been investigated with the help of the ultra-low-background setup consisting of four HP Ge (high-purity germanium) detectors (${approx}$ 22
The $^{150}$Nd($^3$He,$t$) reaction at 140 MeV/u and $^{150}$Sm($t$,$^3$He) reaction at 115 MeV/u were measured, populating excited states in $^{150}$Pm. The transitions studied populate intermediate states of importance for the (neutrinoless) $betab
Solar neutrinos interact within double-beta decay (BB) detectors and contribute to backgrounds for BB experiments. Background contributions due to solar neutrino interactions with BB nuclei of $^{82}$Se, $^{100}$Mo, and $^{150}$Nd are evaluated. They
A search for double-beta decays of 136Xe to excited states of 136Ba has been performed with the first phase data set of the KamLAND-Zen experiment. The 0+1, 2+1 and 2+2 transitions of 0{ u}{beta}{beta} decay were evaluated in an exposure of 89.5kg-yr
We report on a search for double beta decay of $^{130}$Te to the first $0^{+}$ excited state of $^{130}$Xe using a 9.8 kg$cdot$yr exposure of $^{130}$Te collected with the CUORE-0 experiment. In this work we exploit different topologies of coincident