ﻻ يوجد ملخص باللغة العربية
Radiative strength functions (RSFs) in 93-98Mo have been extracted using the (3He,alpha gamma) and (3He,3He gamma) reactions. The RSFs are U-shaped as function of gamma energy with a minimum at around E_gamma=3 MeV. The minimum values increase with neutron number due to the increase in the low-energy tail of the giant electric dipole resonance with nuclear deformation. The unexpected strong increase in strength below E_gamma=3 MeV, here called soft pole, is established for all 93-98Mo isotopes. The soft pole is present at all initial excitation energies in the 5-8 MeV region.
Level densities for 93-98Mo have been extracted using the (3He,alpha gamma) and (3He,3He gamma) reactions. From the level densities thermodynamical quantities such as temperature and heat capacity can be deduced. Data have been analyzed by utilizing
Radiative strength functions of 117Sn has been measured below the neutron separation energy using the (3He,3Hegamma) reactions. An increase in the slope of the strength functions around E_gamma= 4.5 MeV indicates the onset of a resonance-like structu
Photon strength functions describing the average response of the nucleus to an electromagnetic probe are key input information in the theoretical modelling of nuclear reactions. Consequently they are important for a wide range of fields such as nucle
The scandium isotopes 44,45Sc have been studied with the 45Sc(3He,alpha gamma)44Sc and 45Sc(3He,3He gamma)45Sc reactions, respectively. The nuclear level densities and gamma-ray strength functions have been extracted using the Oslo method. The experi
Experimental tests of the Brink-Axel hypothesis relating gamma strength functions (GSF) deduced from absorption and emission experiments are discussed. High-resolution inelastic proton scattering at energies of a few hundred MeV and at very forwrd an