ترغب بنشر مسار تعليمي؟ اضغط هنا

Enhanced radiative strength in the quasi-continuum of 117Sn

98   0   0.0 ( 0 )
 نشر من قبل Ann-Cecilie Larsen
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Radiative strength functions of 117Sn has been measured below the neutron separation energy using the (3He,3Hegamma) reactions. An increase in the slope of the strength functions around E_gamma= 4.5 MeV indicates the onset of a resonance-like structure, giving a significant enhancement of the radiative strength function compared to standard models in the energy region 4.5 <= E_gamma <= 8.0 MeV. For the first time, the functional form of this resonance-like structure has been measured in an odd tin nucleus below neutron threshold in the quasi-continuum region.



قيم البحث

اقرأ أيضاً

Radiative strength functions (RSFs) in 93-98Mo have been extracted using the (3He,alpha gamma) and (3He,3He gamma) reactions. The RSFs are U-shaped as function of gamma energy with a minimum at around E_gamma=3 MeV. The minimum values increase with n eutron number due to the increase in the low-energy tail of the giant electric dipole resonance with nuclear deformation. The unexpected strong increase in strength below E_gamma=3 MeV, here called soft pole, is established for all 93-98Mo isotopes. The soft pole is present at all initial excitation energies in the 5-8 MeV region.
Particle-gamma coincidences have been measured to obtain gamma-ray spectra as a function of excitation energy for 231-233Th and 237-239U. The level densities, which were extracted using the Oslo method, show a constant temperature behavior. The isoto pes display very similar temperatures in the quasi-continuum, however, the even-odd isotopes reveal a constant entropy increase Delta S compared to their even-even neighbors. The entropy excess depends on available orbitals for the last unpaired valence neutron of the heated nuclear system. Also, experimental microcanonical temperature and heat capacity have been extracted. Several poles in the heat capacity curve support the idea that an almost continuous melting of Cooper pairs is responsible for the constant-temperature behavior.
Neutron-capture reactions on very neutron-rich nuclei are essential for heavy-element nucleosynthesis through the rapid neutron-capture process, now shown to take place in neutron-star merger events. For these exotic nuclei, radiative neutron capture is extremely sensitive to their $gamma$-emission probability at very low $gamma$ energies. In this work, we present measurements of the $gamma$-decay strength of $^{70}$Ni over the wide range $1.3 leq E_{gamma} leq 8 $ MeV. A significant enhancement is found in the $gamma$-decay strength for transitions with $E_gamma < 3$ MeV. At present, this is the most neutron-rich nucleus displaying this feature, proving that this phenomenon is not restricted to stable nuclei. We have performed $E1$-strength calculations within the quasiparticle time-blocking approximation, which describe our data above $E_gamma simeq 5$ MeV very well. Moreover, large-scale shell-model calculations indicate an $M1$ nature of the low-energy $gamma$ strength. This turns out to be remarkably robust with respect to the choice of interaction, truncation and model space, and we predict its presence in the whole isotopic chain, in particular the neutron-rich $^{72,74,76}mathrm{Ni}$.
Photoabsorption cross sections and gamma-decay strength function are calculated and compared with experimental data to test the existing models of dipole radiative strength functions (RSF) for the middle-weight and heavy atomic nuclei. Simplified ver sion of the modified Lorentzian model are proposed. New tables of giant dipole resonance (GDR) parameters are given. It is shown that the phenomenological closed-form models with asymmetric shape can be used for overall estimates of the dipole RSF in the gamma -ray energy region up to about 20 MeV when GDR parameters are known or the GDR systematics can be adopted. Otherwise, the HFB-QRPA microscopic model and the semi-classical approach with moving surface appear to be more adequate methods to estimate the dipole photoabsorption RSF.
The semiclassical method for description of the radiative strength function is used for asymmetric nuclei with $N e Z$. The theory is based on the linearized Vlasov-Landau equations in two-component finite Fermi liquid. The dependence of the shape $ E1$ strength on the coupling constant between proton and neutron subsystems was studied.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا