ترغب بنشر مسار تعليمي؟ اضغط هنا

Pseudorapidity dependence of charged hadron transverse momentum spectra in d+Au collisions at sqrt sNN = 200 GeV

72   0   0.0 ( 0 )
 نشر من قبل Jay Kane
 تاريخ النشر 2004
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We have measured the transverse momentum distributions of charged hadrons in d+Au collisions at sqrt sNN = 200 GeV in the range of 0.5 < p_T < 4.0 GeV/c. The total range of pseudorapidity, eta, is 0.2 < eta < 1.4, where positive eta is in the deuteron direction. The data has been divided into three regions of pseudorapidity, covering 0.2 < eta < 0.6, 0.6 < eta < 1.0, and 1.0 < eta < 1.4 and has been compared to charged hadron spectra from p+pbar collisions at the same energy. There is a significant change in the spectral shape as a function of pseudorapidity. As eta increases we see a decrease in the nuclear modification factor RdAu.



قيم البحث

اقرأ أيضاً

We present transverse momentum distributions of charged hadrons produced in Au+Au collisions at sqrt(s_NN) = 200 GeV. The evolution of the spectra for transverse momenta p_T from 0.25 to 5GeV/c is studied as a function of collision centrality over a range from 65 to 344 participating nucleons. We find a significant change of the spectral shape between proton-antiproton and peripheral Au+Au collisions. Comparing peripheral to central Au+Au collisions, we find that the yields at the highest p_T exhibit approximate scaling with the number of participating nucleons, rather than scaling with the number of binary collisions.
123 - B.Alver , et al 2005
We present transverse momentum distributions of charged hadrons produced in Cu+Cu collisions at sqrt(s) = 62.4 and 200 GeV. The spectra are measured for transverse momenta of 0.25 < p_T < 5.0 GeV/c at sqrt(s) = 62.4 GeV and 0.25 < p_T < 7.0 GeV/c at sqrt(s) = 200 GeV, in a pseudo-rapidity range of 0.2 < eta < 1.4. The nuclear modification factor R_AA is calculated relative to p+p data at both collision energies as a function of collision centrality. At a given collision energy and fractional cross-section, R_AA is observed to be systematically larger in Cu+Cu collisions compared to Au+Au. However, for the same number of participating nucleons, R_AA is essentially the same in both systems over the measured range of p_T, in spite of the significantly different geometries of the Cu+Cu and Au+Au systems.
New measurements by the PHENIX experiment at RHIC for eta production at midrapidity as a function of transverse momentum (p_T) and collision centrality in sqrt(s_NN) = 200 GeV Au+Au and p+p collisions are presented. They indicate nuclear modification factors (R_AA) that are similar both in magnitude and trend to those found in earlier pi^0 measurements. Linear fits to R_AA in the 5--20 GeV/c p_T region show that the slope is consistent with zero within two standard deviations at all centralities although a slow rise cannot be excluded. Having different statistical and systematic uncertainties the pi^0 and eta measurements are complementary at high p_T; thus, along with the extended p_T range of these data they can provide additional constraints for theoretical modeling and the extraction of transport properties.
Transverse momentum spectra of pions, kaons, protons and antiprotons from Au+Au collisions at sqrt(s_(NN)) = 62.4 GeV have been measured by the PHOBOS experiment at the Relativistic Heavy Ion Collider at Brookhaven National Laboratory. The identifica tion of particles relies on three different methods: low momentum particles stopping in the first detector layers; the specific energy loss (dE/dx) in the silicon Spectrometer, and Time-of-Flight measurement. These methods cover the transverse momentum ranges 0.03-0.2, 0.2-1.0 and 0.5-3.0 GeV/c, respectively. Baryons are found to have substantially harder transverse momentum spectra than mesons. The pT region in which the proton to pion ratio reaches unity in central Au+Au collisions at sqrt(s_(NN)) = 62.4 GeV fits into a smooth trend as a function of collision energy. At low transverse momenta, the spectra exhibit a significant deviation from transverse mass scaling, and when the observed particle yields at very low pT are compared to extrapolations from higher pT, no significant excess is found. By comparing our results to Au+Au collisions at sqrt(s_(NN)) = 200 GeV, we conclude that the net proton yield at midrapidity is proportional to the number of participant nucleons in the collision.
The transverse momentum ($p_{mathrm T}$) spectra for identified charged pions, protons and anti-protons from $p$+$p$ and $d$+Au collisions are measured around midrapidity ($mid$y$mid$ $<$ 0.5) over the range of 0.3 $<$ $p_{mathrm T}$ $<$ 10 GeV/$c$ a t $sqrt{s_{mathrm {NN}}}$ = 200 GeV. The charged pion and proton+anti-proton spectra at high p_{T} in p+p collisions have been compared with the next-to-leading order perturbative quantum chromodynamic (NLO pQCD) calculations with a specific fragmentation scheme. The p/pi^{+} and pbar/pi^{-}has been studied at high p_{T}. The nuclear modification factor (R_{dAu}) shows that the identified particle Cronin effects around midrapidity are significantly non-zero for charged pions and to be even larger for protons at intermediate p_{T} (2 < p_{T} < 5 GeV/c).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا