ترغب بنشر مسار تعليمي؟ اضغط هنا

Identified hadron transverse momentum spectra in Au+Au collisions at sqrt(s_(NN))=62.4 GeV

310   0   0.0 ( 0 )
 نشر من قبل G\\'abor Veres
 تاريخ النشر 2006
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Transverse momentum spectra of pions, kaons, protons and antiprotons from Au+Au collisions at sqrt(s_(NN)) = 62.4 GeV have been measured by the PHOBOS experiment at the Relativistic Heavy Ion Collider at Brookhaven National Laboratory. The identification of particles relies on three different methods: low momentum particles stopping in the first detector layers; the specific energy loss (dE/dx) in the silicon Spectrometer, and Time-of-Flight measurement. These methods cover the transverse momentum ranges 0.03-0.2, 0.2-1.0 and 0.5-3.0 GeV/c, respectively. Baryons are found to have substantially harder transverse momentum spectra than mesons. The pT region in which the proton to pion ratio reaches unity in central Au+Au collisions at sqrt(s_(NN)) = 62.4 GeV fits into a smooth trend as a function of collision energy. At low transverse momenta, the spectra exhibit a significant deviation from transverse mass scaling, and when the observed particle yields at very low pT are compared to extrapolations from higher pT, no significant excess is found. By comparing our results to Au+Au collisions at sqrt(s_(NN)) = 200 GeV, we conclude that the net proton yield at midrapidity is proportional to the number of participant nucleons in the collision.

قيم البحث

اقرأ أيضاً

Measurements of the elliptic flow, $v_{2}$, of identified hadrons ($pi^{pm}$, $K^{pm}$, $K_{s}^{0}$, $p$, $bar{p}$, $phi$, $Lambda$, $bar{Lambda}$, $Xi^{-}$, $bar{Xi}^{+}$, $Omega^{-}$, $bar{Omega}^{+}$) in Au+Au collisions at $sqrt{s_{NN}}=$ 7.7, 11 .5, 19.6, 27, 39 and 62.4 GeV are presented. The measurements were done at mid-rapidity using the Time Projection Chamber and the Time-of-Flight detectors of the STAR experiment during the Beam Energy Scan program at RHIC. A significant difference in the $v_{2}$ values for particles and the corresponding anti-particles was observed at all transverse momenta for the first time. The difference increases with decreasing center-of-mass energy, $sqrt{s_{NN}}$ (or increasing baryon chemical potential, $mu_{B}$) and is larger for the baryons as compared to the mesons. This implies that particles and anti-particles are no longer consistent with the universal number-of-constituent quark (NCQ) scaling of $v_{2}$ that was observed at $sqrt{s_{NN}}=$ 200 GeV. However, for the group of particles NCQ scaling at $(m_{T}-m_{0})/n_{q}>$ 0.4 GeV/$c^{2}$ is not violated within $pm$10%. The $v_{2}$ values for $phi$ mesons at 7.7 and 11.5 GeV are approximately two standard deviations from the trend defined by the other hadrons at the highest measured $p_{T}$ values.
We present measurements of electrons and positrons from the semileptonic decays of heavy-flavor hadrons at midrapidity ($|y|<$ 0.35) in Au$+$Au collisions at $sqrt{s_{_{NN}}}=62.4$ GeV. The data were collected in 2010 by the PHENIX experiment that in cluded the new hadron-blind detector. The invariant yield of electrons from heavy-flavor decays is measured as a function of transverse momentum in the range $1<p_T^e<5$ GeV/$c$. The invariant yield per binary collision is slightly enhanced above the $p$$+$$p$ reference in Au$+$Au 0%--20%, 20%--40% and 40%--60% centralities at a comparable level. This may be a result of the interplay between initial-state Cronin effects, final-state flow, and energy loss for heavy-quark production at this low beam energy. The $v_2$ of electrons from heavy-flavor decays is nonzero when averaged between $1.3<p_T^e<2.5$ GeV/$c$ from $0<{rm centrality}<40$% collisions at $sqrt{s_{_{NN}}}=62.4$ GeV. For 20%--40% centrality collisions, the $v_2$ at $sqrt{s_{_{NN}}}=62.4$ GeV is smaller than that for heavy flavor decays at $sqrt{s_{_{NN}}}=200$ GeV. The $v_2$ of the electrons from heavy-flavor decay at the lower beam energy is also smaller than $v_2$ for pions. Both results indicate that the heavy-quarks interact with the medium formed in these collisions, but they may not be at the same level of thermalization with the medium as observed at $sqrt{s_{_{NN}}}=200$ GeV.
120 - Jennifer L. Klay 2002
The STAR Collaboration presents new measurements of inclusive charged hadron distributions for $p_{T} <$ 12 GeV/c from Au+Au collisions at $sqrt{s_{NN}}$ = 200 GeV. Charged hadron suppression at high $p_{T}$ is similar in shape and magnitude at all c entralities to that observed previously at $sqrt{s_{NN}}$ = 130 GeV for $p_{T} <$ 6 GeV/c. The ratio of spectra from central and peripheral Au+Au collisions shows that hadron suppression is approximately constant within 6 $< p_{T} <$ 12 GeV/c. The ratios of charged hadron spectra at the two beam energies show a 15-20% increase in yield at low $p_{T}$. At high $p_{T}$, the ratios show a larger increase that agrees well with pQCD calculations of the $sqrt{s_{NN}}$ dependence of particle production in Au+Au collisions.
72 - Shusu Shi 2012
We present the $v_2$ measurement at midrapidity from Au+Au collisions at $sqrt{s_{NN}}=$ 7.7, 11.5, 19.6, 27, 39 and 62.4 GeV for inclusive charged hadrons and identified hadrons ($pi^{pm}$, $K^{pm}$, $K_{S}^{0}$, $p$, $bar{p}$, $phi$, $Lambda$, $bar {Lambda}$, $Xi^{-}$, $bar{Xi}^{+}$, $Omega^{-}$, $bar{Omega}^{+}$) up to 4 GeV/$c$ in $p_{T}$. The beam energy and centrality dependence of charged hadron $v_2$ are presented with comparison to higher energies at RHIC and LHC. The identified hadron $v_{2}$ are used to discuss the NCQ scaling for different beam energies. Significant difference in $v_{2}(p_{T})$ is observed between particles and corresponding anti-particles for $sqrt{s_{NN}} <$ 39 GeV. These differences are more pronounced for baryons compared to mesons and they increase with decreasing energy.
We present measurements of $e^+e^-$ production at midrapidity in Au$+$Au collisions at $sqrt{s_{_{NN}}}$ = 200 GeV. The invariant yield is studied within the PHENIX detector acceptance over a wide range of mass ($m_{ee} <$ 5 GeV/$c^2$) and pair trans verse momentum ($p_T$ $<$ 5 GeV/$c$), for minimum bias and for five centrality classes. The ee yield is compared to the expectations from known sources. In the low-mass region ($m_{ee}=0.30$--0.76 GeV/$c^2$) there is an enhancement that increases with centrality and is distributed over the entire pair pt range measured. It is significantly smaller than previously reported by the PHENIX experiment and amounts to $2.3pm0.4({rm stat})pm0.4({rm syst})pm0.2^{rm model}$ or to $1.7pm0.3({rm stat})pm0.3({rm syst})pm0.2^{rm model}$ for minimum bias collisions when the open-heavy-flavor contribution is calculated with {sc pythia} or {sc mc@nlo}, respectively. The inclusive mass and $p_T$ distributions as well as the centrality dependence are well reproduced by model calculations where the enhancement mainly originates from the melting of the $rho$ meson resonance as the system approaches chiral symmetry restoration. In the intermediate-mass region ($m_{ee}$ = 1.2--2.8 GeV/$c^2$), the data hint at a significant contribution in addition to the yield from the semileptonic decays of heavy-flavor mesons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا