ترغب بنشر مسار تعليمي؟ اضغط هنا

Radiation Damage of Polypropylene Fiber Targets in Storage Rings

150   0   0.0 ( 0 )
 نشر من قبل Heiko Rohdjess
 تاريخ النشر 2004
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Thin polypropylene (CH$_2$) fibers have been used for internal experiments in storage rings as an option for hydrogen targets. The change of the hydrogen content due to the radiation dose applied by the circulating proton beam has been investigated in the range $1cdot10^6$ to $2cdot10^8$~Gy at beam momenta of 1.5 to 3 GeV/c by comparing the elastic pp-scattering yield to that from inelastic p-carbon reactions. It is found that the loss of hydrogen as a function of applied dose receives contributions from a fast and a slow component.



قيم البحث

اقرأ أيضاً

82 - K. Slifer 2007
Solid NH3 and ND3 provide a highly polarizable, radiation resistant source of polarized protons and deuterons and have been used extensively in high luminosity experiments investigating the spin structure of the nucleon. Over the past twenty years, t he UVA polarized target group has been instrumental in producing and polarizing much of the material used in these studies, and many practical considerations have been learned in this time. In this discussion, we analyze the polarization performance of the solid ammonia targets used during the recent JLab Eg4 run. Topics include the rate of polarization decay with accumulated charge, the annealing procedure for radiation damaged targets to recover polarization, and the radiation induced change in optimum microwave frequency used to polarize the sample. We also discuss the success we have had in implementing frequency modulation of the polarizing microwave frequency.
In the last two decades a number of nuclear structure and astrophysics experiments were performed at heavy-ion storage rings employing unique experimental conditions offered by such machines. Furthermore, building on the experience gained at the two facilities presently in operation, several new storage ring projects were launched worldwide. This contribution is intended to provide a brief review of the fast growing field of nuclear structure and astrophysics research at storage rings.
Measured response functions and low photon yield spectra of silicon photomultipliers (SiPM) were compared to multi-photoelectron pulse-height distributions generated by a Monte Carlo model. Characteristic parameters for SiPM were derived. The devices were irradiated with 14 MeV electrons at the Mainz microtron MAMI. It is shown that the first noticeable damage consists of an increase in the rate of dark pulses and the loss of uniformity in the pixel gains. Higher radiation doses reduced also the photon detection efficiency. The results are especially relevant for applications of SiPM in fibre detectors at high luminosity experiments.
Storage rings have been employed over three decades in various kinds of nuclear and atomic physics experiments with highly charged ions. Storage ring operation and precision physics experiments benefit from the availability of beam cooling which is c ommon to nearly all facilities. The basic aspects of the storage ring components and the operation of the ring in various ion-optical modes as well as the achievable beam conditions are described. Ion storage rings offer unparalleled capabilities for high precision experiments with stable and radioactive beams. The versatile techniques and methods for beam manipulations allow for preparing beams of highest quality at any energy of interest. The rings are therefore part of the experiment . Recent experiments conducted in a wide energy range and with various experimental installations are discussed. An overview of active and planned facilities, new experimental set-ups and proposed physics experiments completes this review.
137 - Yuri F. Orlov 2006
A resonance method of measuring the electric dipole moment (EDM) of nuclei in storage rings is described, based on two new ideas: (1) Oscillating particles velocities in resonance with spin precession, and (2) alternately producing two sub-beams with different betatron tunes--one sub-beam to amplify and thus make it easier to correct ring imperfections that produce false signals imitating EDM signals, and the other to make the EDM measurement.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا