ترغب بنشر مسار تعليمي؟ اضغط هنا

Highly deformed $^{40}$Ca configurations in $^{28}$Si + $^{12}$C

118   0   0.0 ( 0 )
 نشر من قبل Rousseau Marc
 تاريخ النشر 2002
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The possible occurrence of highly deformed configurations in the $^{40}$Ca di-nuclear system formed in the $^{28}$Si + $^{12}$C reaction is investigated by analyzing the spectra of emitted light charged particles. Both inclusive and exclusive measurements of the heavy fragments (A $geq$ 10) and their associated light charged particles (protons and $alpha$ particles) have been made at the IReS Strasbourg {sc VIVITRON} Tandem facility at bombarding energies of $E_{lab} (^{28}$Si) = 112 MeV and 180 MeV by using the {sc ICARE} charged particle multidetector array. The energy spectra, velocity distributions, and both in-plane and out-of-plane angular correlations of light charged particles are compared to statistical-model calculations using a consistent set of parameters with spin-dependent level densities. The analysis suggests the onset of large nuclear deformation in $^{40}$Ca at high spin.



قيم البحث

اقرأ أيضاً

The possible occurence of highly deformed configurations is investigated in the $^{40}$Ca and $^{56}$Ni di-nuclear systems as formed in the $^{28}$Si+$^{12}$C,$^{28}$Si reactions by using the properties of emitted light charged particles. Inclusive a s well as exclusive data of the heavy fragments and their associated light charged particles have been collected by using the {sc ICARE} charged particle multidetector array. The data are analysed by Monte Carlo CASCADE statistical-model calculations using a consistent set of parameters with spin-dependent level densities. Significant deformation effects at high spin are observed as well as an unexpected large $^{8}$Be cluster emission of a binary nature.
Inclusive as well as exclusive energy spectra of the light charged particles emitted in the $^{28}$Si ($E_{lab}$=112.6 MeV) + $^{12}$C reaction has been measured using the {bf ICARE} multidetector array. The data have been analysed by statistical-mod el calculations using a spin-dependent level density parametrization. The results suggest significant deformation effects at high spin and cluster emission of $^8$Be.
Velocity and energy spectra of the light charged particles (protons and $alpha$-particles) emitted in the $^{28}$Si(E$_{lab}$ = 112 MeV) + $^{28}$Si reaction have been measured at the Strasbourg VIVITRON Tandem facility. The ICARE charged particle mu ltidetector array was used to obtain exclusive spectra of the light particles in the angular range 15 - 150 degree and to determine the angular correlations of these particles with respect to the emission angles of the evaporation residues. The experimental data are analysed in the framework of the statistical model. The exclusive energy spectra of $alpha$-particles emitted from the $^{28}$Si + $^{28}$Si compound system are generally well reproduced by Monte Carlo calculations using spin-dependent level densities. This spin dependence approach suggests the onset of large deformations at high spin. A re-analysis of previous $alpha$-particle data from the $^{30}$Si + $^{30}$Si compound system, using the same spin-dependent parametrization, is also presented in the framework of a general discussion of the occurrence of large deformation effects in the A$_{CN}$ ~ 60 mass region.
76 - M. Tanaka , M. Takechi , A. Homma 2019
Interaction cross sections for $^{42textrm{-}51}$Ca on a carbon target at 280 MeV/nucleon have been measured for the first time. The neutron number dependence of derived root-mean-square matter radii shows a significant increase beyond the neutron ma gic number $N=28$. Furthermore, this enhancement of matter radii is much larger than that of the previously measured charge radii, indicating a novel growth in neutron skin thickness. A simple examination based on the Fermi-type distribution, and the Mean-Field calculations point out that this anomalous enhancement of the nuclear size beyond $N=28$ results from an enlargement of the core by a sudden increase in the surface diffuseness of the neutron density distribution, which implies the swelling of the bare $^{48}$Ca core in Ca isotopes beyond $N=28$.
Geometric configurations of three-$alpha$ particles in the ground- and first-excited $J^pi=0^+$ states of $^{12}$C are discussed within two types of $alpha$-cluster models which treat the Pauli principle differently. Though there are some quantitativ e differences especially in the internal region of the wave functions, equilateral triangle configurations are dominant in the ground state, while in the first excited $0^+$ state isosceles triangle configurations dominate, originating from $^8{rm Be}+alpha$ configurations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا