ترغب بنشر مسار تعليمي؟ اضغط هنا

Cluster Emission of $^8$Be in the $^{28}$Si+$^{12}$C Fusion Reaction at Low Temperature

196   0   0.0 ( 0 )
 نشر من قبل ul
 تاريخ النشر 1999
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Inclusive as well as exclusive energy spectra of the light charged particles emitted in the $^{28}$Si ($E_{lab}$=112.6 MeV) + $^{12}$C reaction has been measured using the {bf ICARE} multidetector array. The data have been analysed by statistical-model calculations using a spin-dependent level density parametrization. The results suggest significant deformation effects at high spin and cluster emission of $^8$Be.



قيم البحث

اقرأ أيضاً

The possible occurence of highly deformed configurations is investigated in the $^{40}$Ca and $^{56}$Ni di-nuclear systems as formed in the $^{28}$Si+$^{12}$C,$^{28}$Si reactions by using the properties of emitted light charged particles. Inclusive a s well as exclusive data of the heavy fragments and their associated light charged particles have been collected by using the {sc ICARE} charged particle multidetector array. The data are analysed by Monte Carlo CASCADE statistical-model calculations using a consistent set of parameters with spin-dependent level densities. Significant deformation effects at high spin are observed as well as an unexpected large $^{8}$Be cluster emission of a binary nature.
120 - W. P. Tan , A. Boeltzig , C. Dulal 2020
Carbon and oxygen burning reactions, in particular, $^{12}$C+$^{12}$C fusion, are important for the understanding and interpretation of the late phases of stellar evolution as well as the ignition and nucleosynthesis in cataclysmic binary systems suc h as type Ia supernovae and x-ray superbursts. A new measurement of this reaction has been performed at the University of Notre Dame using particle-$gamma$ coincidence techniques with SAND (a silicon detector array) at the high-intensity 5U Pelletron accelerator. New results for $^{12}$C+$^{12}$C fusion at low energies relevant to nuclear astrophysics are reported. They show strong disagreement with a recent measurement using the indirect Trojan Horse method. The impact on the carbon burning process under astrophysical scenarios will be discussed.
106 - Y. J. Li , X. Fang , B. Bucher 2020
The $^{12}$C+$^{12}$C fusion reaction plays a crucial role in stellar evolution and explosions. Its open reaction channels mainly include $alpha$, $p$, $n$, and ${}^{8}$Be. Despite more than a half century of efforts, large discrepancies remain among the experimental data measured using various techniques. In this work, we analyze the existing data using the statistical model. Our calculation shows: 1) the relative systematic uncertainties of the predicted branching ratios get smaller as the predicted ratios increase; 2) the total modified astrophysical S-factors (S$^*$ factors) of the $p$ and $alpha$ channels can each be obtained by summing the S$^*$ factors of their corresponding ground-state transitions and the characteristic $gamma$ rays while taking into account the contributions of the missing channels to the latter. After applying corrections based on branching ratios predicted by the statistical model, an agreement is achieved among the different data sets at ${E}_{cm}>$4 MeV, while some discrepancies remain at lower energies suggesting the need for better measurements in the near future. We find that the recent S$^*$ factor obtained from an indirect measurement is inconsistent with the direct measurement at energies below 2.6 MeV. We recommend upper and lower limits for the ${}^{12}$C+${}^{12}$C S$^*$ factor based on the existing models. A new $^{12}$C+$^{12}$C reaction rate is also recommended.
The possible occurrence of highly deformed configurations in the $^{40}$Ca di-nuclear system formed in the $^{28}$Si + $^{12}$C reaction is investigated by analyzing the spectra of emitted light charged particles. Both inclusive and exclusive measure ments of the heavy fragments (A $geq$ 10) and their associated light charged particles (protons and $alpha$ particles) have been made at the IReS Strasbourg {sc VIVITRON} Tandem facility at bombarding energies of $E_{lab} (^{28}$Si) = 112 MeV and 180 MeV by using the {sc ICARE} charged particle multidetector array. The energy spectra, velocity distributions, and both in-plane and out-of-plane angular correlations of light charged particles are compared to statistical-model calculations using a consistent set of parameters with spin-dependent level densities. The analysis suggests the onset of large nuclear deformation in $^{40}$Ca at high spin.
Multiple alpha coincidence and correlations are studied in the reaction $^{12}$C+$^{12}$C at 95 MeV for fusion-evaporation events completely detected in charge. Two specific channels with Carbon and Oxygen residues in coincidence with $alpha$-particl es are addressed, which are associated with anomalously high branching ratios with respect the predictions by Hauser-Feshbach calculations. Triple alpha emission appears kinematically compatible with a sequential emission from a highly excited Mg. The phase space distribution of $alpha$-$alpha$ coincidences suggests a correlated emission from a Mg compound, leaving an Oxygen residue excited above the threshold for neutron decay. These observations indicate a preferential $alpha$ emission of $^{24}$Mg at excitation energies well above the threshold for $6-alpha$ decay.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا