ﻻ يوجد ملخص باللغة العربية
Using particle-$gamma$ coincidences we have studied the population of final states after the emission of 2 $alpha$-particles and of $^{8}$Be in nuclei formed in $^{32}$S+$^{24}$Mg reactions at an energy of $textrm{E}_{rm L}(^{32}textrm{S}) = 130 {rm MeV}$. The data were obtained in a setup consisting of the GASP $gamma$-ray detection array and the multidetector array ISIS. Particle identification is obtained from the $Delta$E and E signals of the ISIS silicon detector telescopes, the $^{8}$Be being identified by the instantaneous pile up of the $Delta$E and E pulses. $gamma$-ray decays of the $^{48}$Cr nucleus are identified with coincidences set on 2 $alpha$-particles and on $^{8}$Be. Some transitions of the side-band with $K^pi=4^{-}$ show stronger population for $^{8}$Be emission relative to that of 2 $alpha$-particles (by a factor $1.5-1.8$). This observation is interpreted as due to an enhanced emission of $^{8}$Be into a more deformed nucleus. Calculations based on the extended Hauser-Feshbach compound decay formalism confirm this observation quantitatively.
Inclusive as well as exclusive energy spectra of the light charged particles emitted in the $^{28}$Si ($E_{lab}$=112.6 MeV) + $^{12}$C reaction has been measured using the {bf ICARE} multidetector array. The data have been analysed by statistical-mod
The properties of the two-body channels in the $^{35}$Cl + $^{24}$Mg reaction at a bombarding energy of 275 MeV have been investigated by using fragment-fragment coincident techniques. The exclusive data show that the majority of events arises from a
The $^{24}$Mg($alpha,gamma$)$^{28}$Si reaction influences the production of magnesium and silicon isotopes during carbon burning and is one of eight reaction rates found to significantly impact the shape of calculated X-ray burst light curves. The re
The $^{24}$Mg($p$, $alpha$)$^{21}$Na reaction was measured at the Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory in order to better constrain spins and parities of energy levels in $^{21}$Na for the astrophysically important
Low spin states in the self-conjugate even-even nucleus 48-Cr were investigated using the MINIBALL gamma-ray spectrometer. At the FN tandem accelerator in Cologne the 46-Ti(3-He,n) reaction was used for the measurement of gamma-gamma coincidences for