ﻻ يوجد ملخص باللغة العربية
We have carried out an experiment to search for a neutron-rich hypernucleus, $^6_{Lambda}$H, by the $^6$Li($pi^-,K^+$) reaction at $p_{pi^-}$ =1.2 GeV/$c$. The obtained missing mass spectrum with an estimated energy resolution of 3.2 MeV (FWHM) showed no peak structure corresponding to the $^6_{Lambda}$H hypernucleus neither below nor above the $^4_{Lambda}$H$+2n$ particle decay threshold. An upper limit of the production cross section for the bound $^6_{Lambda}$H hypernucleus was estimated to be 1.2 nb/sr at 90% confidence level.
The Theta+ was searched for via the K+p -> pi+X reaction using the 1.2 GeV/c K+ beam at the K6 beam line of the KEK-PS 12 GeV Proton Synchrotron. In the missing mass spectrum of the K+p -> pi+X reaction, no clear peak structure was observed. Therefor
We searched for the bound state of the neutron-rich $Lambda$-hypernucleus ${}^{6}_{Lambda}$H, using the ${}^{6}$Li($pi^{-}, K^{+}$)X double charge-exchange reaction at a $pi^{-}$ beam momentum of 1.2 GeV/c at J-PARC. A total of $1.4 times 10^{12}$ $p
The $Theta^+$ pentaquark baryon was searched for via the $pi^-pto K^-X$ reaction in a missing-mass resolution of 1.4 MeV/$c^2$(FWHM) at J-PARC. $pi^-$ meson beams were incident on the liquid hydrogen target with the beam momentum of 1.92 GeV/$c$. No
We have measured an inclusive missing-mass spectrum of the $d(pi^+, K^+)$ reaction at the pion incident momentum of 1.69 GeV/$c$ at the laboratory scattering angles between 2$^circ$ and 16$^circ$ with the missing-mass resolution of 2.7 $pm$ 0.1 MeV/$
We have studied the reaction K+ p -> K+ n pi+ using an 11 GeV/c K+ beam and the Large Acceptance Superconducting Solenoid (LASS) multiparticle spectrometer facility at SLAC. We put limits on the production of narrow theta+ baryons in this reaction.