ترغب بنشر مسار تعليمي؟ اضغط هنا

Extreme waves and modulational instability: wave flume experiments on irregular waves

37   0   0.0 ( 0 )
 نشر من قبل Miguel Onorato
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss the formation of large amplitude waves for sea states characterized by JONSWAP spectra with random phases. In this context we discuss experimental results performed in one of the largest wave tank facilities in the world. We present experimental evidence that the tail of the cumulative probability function of the wave heights for random waves strongly depends on the ratio between the wave steepness and the spectral bandwidth. When this ratio, called the Benjamin-Feir Index, is large the Rayleigh distribution clearly underestimates the occurrence of large amplitude waves. Our experimental results are also successfully compared with previously performed numerical simulations of the Dysthe equation.

قيم البحث

اقرأ أيضاً

We study numerically the nonlinear stage of modulational instability (MI) of cnoidal waves, in the framework of the focusing one-dimensional Nonlinear Schrodinger (NLS) equation. Cnoidal waves are the exact periodic solutions of the NLS equation and can be represented as a lattice of overlapping solitons. MI of these lattices lead to development of integrable turbulence [Zakharov V.E., Stud. Appl. Math. 122, 219-234 (2009)]. We study the major characteristics of the turbulence for dn-branch of cnoidal waves and demonstrate how these characteristics depend on the degree of overlapping between the solitons within the cnoidal wave. Integrable turbulence, that develops from MI of dn-branch of cnoidal waves, asymptotically approaches to its stationary state in oscillatory way. During this process kinetic and potential energies oscillate around their asymptotic values. The amplitudes of these oscillations decay with time as t^{-a}, 1<a<1.5, the phases contain nonlinear phase shift decaying as t^{-1/2}, and the frequency of the oscillations is equal to the double maximal growth rate of the MI, s=2g_{max}. In the asymptotic stationary state the ratio of potential to kinetic energy is equal to -2. The asymptotic PDF of wave amplitudes is close to Rayleigh distribution for cnoidal waves with strong overlapping, and is significantly non-Rayleigh one for cnoidal waves with weak overlapping of solitons. In the latter case the dynamics of the system reduces to two-soliton collisions, which occur with exponentially small rate and provide up to two-fold increase in amplitude compared with the original cnoidal wave.
Waves traveling through random media exhibit random focusing that leads to extremely high wave intensities even in the absence of nonlinearities. Although such extreme events are present in a wide variety of physical systems and the statistics of the highest waves is important for their analysis and forecast, it remains poorly understood in particular in the regime where the waves are highest. We suggest a new approach that greatly simplifies the mathematical analysis and calculate the scaling and the distribution of the highest waves valid for a wide range of parameters.
We study the nonlinear interactions of waves with a doubled-peaked power spectrum in shallow water. The starting point is the prototypical equation for nonlinear uni-directional waves in shallow water, i.e. the Korteweg de Vries equation. Using a mul tiple-scale technique two defocusing coupled Nonlinear Schrodinger equations are derived. We show analytically that plane wave solutions of such a system can be unstable to small perturbations. This surprising result suggests the existence of a new energy exchange mechanism which could influence the behaviour of ocean waves in shallow water.
A generalized plasma model having warm ions, iso-thermal electrons, super-thermal electrons and positrons is considered to theoretically investigate the modulational instability (MI) of ion-acoustic waves (IAWs). A standard nonlinear Schr{o}dinger eq uation is derived by applying reductive perturbation method to study the MI of IAWs. It is observed that the MI criteria of the IAWs are significantly modified by various plasma parameters. The present results should be useful in understanding the conditions for MI of IAWs which are relevant to both space and laboratory plasma system.
97 - Gong Chen , Qingtang Su 2020
The well-known Stokes waves refer to periodic traveling waves under the gravity at the free surface of a two dimensional full water wave system. In this paper, we prove that small-amplitude Stokes waves with infinite depth are nonlinearly unstable un der long-wave perturbations. Our approach is based on the modulational approximation of the water wave system and the instability mechanism of the focusing cubic nonlinear Schrodinger equation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا