ﻻ يوجد ملخص باللغة العربية
Extending the work of del-Castillo-Negrete, Greene, and Morrison, Physica D {bf 91}, 1 (1996) and {bf 100}, 311 (1997) on the standard nontwist map, the breakup of an invariant torus with winding number equal to the inverse golden mean squared is studied. Improved numerical techniques provide the greater accuracy that is needed for this case. The new results are interpreted within the renormalization group framework by constructing a renormalization operator on the space of commuting map pairs, and by studying the fixed points of the so constructed operator.
For the case of generic 4D symplectic maps with a mixed phase space we investigate the global organization of regular tori. For this we compute elliptic 1-tori of two coupled standard maps and display them in a 3D phase-space slice. This visualizes h
For an integrable Tonelli Hamiltonian with $d (dgeq 2)$ degrees of freedom, we show that all of the Lagrangian tori can be destroyed by analytic perturbations which are arbitrarily small in the $C^{d-delta}$ topology.
We study the presence in the Lozi map of a type of abrupt order-to-order and order-to-chaos transitions which are mediated by an attractor made of a continuum of neutrally stable limit cycles, all with the same period.
In recent papers, summarized in survey [1], we construct a number of examples of non standard lagrangian tori on compact toric varieties and as well on certain non toric varieties which admit pseudotoric structures. Using this pseudotoric technique w
This work is devoted to further consideration of the Henon map with negative values of the shrinking parameter and the study of transient oscillations, multistability, and possible existence of hidden attractors. The computation of the finite-time Ly