ترغب بنشر مسار تعليمي؟ اضغط هنا

Renormalization and destruction of $1/gamma^2$ tori in the standard nontwist map

167   0   0.0 ( 0 )
 نشر من قبل Amit Apte
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Extending the work of del-Castillo-Negrete, Greene, and Morrison, Physica D {bf 91}, 1 (1996) and {bf 100}, 311 (1997) on the standard nontwist map, the breakup of an invariant torus with winding number equal to the inverse golden mean squared is studied. Improved numerical techniques provide the greater accuracy that is needed for this case. The new results are interpreted within the renormalization group framework by constructing a renormalization operator on the space of commuting map pairs, and by studying the fixed points of the so constructed operator.



قيم البحث

اقرأ أيضاً

For the case of generic 4D symplectic maps with a mixed phase space we investigate the global organization of regular tori. For this we compute elliptic 1-tori of two coupled standard maps and display them in a 3D phase-space slice. This visualizes h ow all regular 2-tori are organized around a skeleton of elliptic 1-tori in the 4D phase space. The 1-tori occur in two types of one-parameter families: (a) Lyapunov families emanating from elliptic-elliptic periodic orbits, which are observed to exist even far away from them and beyond major resonance gaps, and (b) families originating from rank-1 resonances. At resonance gaps of both types of families either (i) periodic orbits exist, similar to the Poincare-Birkhoff theorem for 2D maps, or (ii) the family may form large bends. In combination these results allow for describing the hierarchical structure of regular tori in the 4D phase space analogously to the islands-around-islands hierarchy in 2D maps.
91 - Lin Wang 2014
For an integrable Tonelli Hamiltonian with $d (dgeq 2)$ degrees of freedom, we show that all of the Lagrangian tori can be destroyed by analytic perturbations which are arbitrarily small in the $C^{d-delta}$ topology.
We study the presence in the Lozi map of a type of abrupt order-to-order and order-to-chaos transitions which are mediated by an attractor made of a continuum of neutrally stable limit cycles, all with the same period.
318 - Nikolai A. Tyurin 2019
In recent papers, summarized in survey [1], we construct a number of examples of non standard lagrangian tori on compact toric varieties and as well on certain non toric varieties which admit pseudotoric structures. Using this pseudotoric technique w e explain how non standard lagrangian tori of Chekanov type can be constructed and what is the topological difference between standard Liouville tori and the non standard ones. However we have not discussed the natural question about the periods of the constructed twist tori; in particular the monotonicity problem for the monotonic case was not studied there. In the paper we present several remarks on these questions, in particular we show for the monotonic case how to construct non standard lagrangian tori which satisify the monotonicity condition. First of all we study non standard tori which are Bohr - Sommerfeld with respect to the anticanonical class. This notion was introduced in [2], where one defines certain universal Maslov class for the ${rm BS}_{can}$ lagrangian submanifolds in compact simply connected monotonic symplectic manifolds. Then we show how monotonic non standard lagrangian tori of Chekanov type can be constructed. Furthemore we extend the consideration to pseudotoric setup and construct examples of monotonic lagrangian tori in non toric monotonic manifolds: complex 4 - dimensional quadric and full flag variety $F^3$.
This work is devoted to further consideration of the Henon map with negative values of the shrinking parameter and the study of transient oscillations, multistability, and possible existence of hidden attractors. The computation of the finite-time Ly apunov exponents by different algorithms is discussed. A new adaptive algorithm for the finite-time Lyapunov dimension computation in studying the dynamics of dimension is used. Analytical estimates of the Lyapunov dimension using the localization of attractors are given. A proof of the conjecture on the Lyapunov dimension of self-excited attractors and derivation of the exact Lyapunov dimension formula are revisited.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا