ﻻ يوجد ملخص باللغة العربية
We study the fields of endomorphisms intertwining pairs of symplectic structures. Using these endomorphisms we prove an analogue of Mosers theorem for simultaneous isotopies of two families of symplectic forms. We also consider the geometric structures defined by pairs and triples of symplectic forms for which the squares of the intertwining endomorphisms are plus or minus the identity. For pairs of forms we recover the notions of symplectic pairs and of holomorphic symplectic structures. For triples we recover the notion of a hypersymplectic structure, and we also find three new structures that have not been considered before. One of these is the symplectic formulation of hyper-Kaehler geometry, which turns out to be a strict generalization of the usual definition in terms of differential or Kaehler geometry.
We study the geometry of manifolds carrying symplectic pairs consisting of two closed 2-forms of constant ranks, whose kernel foliations are complementary. Using a variation of the construction of Boothby and Wang we build contact-symplectic and contact pairs from symplectic pairs.
We prove a version of the Arnold conjecture for Lagrangian submanifolds of conformal symplectic manifolds: a Lagrangian $L$ which has non-zero Morse-Novikov homology for the restriction of the Lee form $beta$ cannot be disjoined from itself by a $C^0
We inquire into the relation between the curl operators, the Poisson coboundary operators and contravariant derivatives on Poisson manifolds to study the theory of differential operators in Poisson geometry. Given an oriented Poisson manifold, we des
We determine the skein-valued Gromov-Witten partition function for a single toric Lagrangian brane in $mathbb{C}^3$ or the resolved conifold. We first show geometrically they must satisfy a certain skein-theoretic recursion, and then solve this equat
The Moutard transformation for a two-dimensional Dirac operator with a complex-valued potential is constructed. It is showed that this transformation relates the potentials of Weierstrass representations of surfaces related by a composition of the in