ترغب بنشر مسار تعليمي؟ اضغط هنا

The geometry of symplectic pairs

94   0   0.0 ( 0 )
 نشر من قبل D. Kotschick
 تاريخ النشر 2004
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the geometry of manifolds carrying symplectic pairs consisting of two closed 2-forms of constant ranks, whose kernel foliations are complementary. Using a variation of the construction of Boothby and Wang we build contact-symplectic and contact pairs from symplectic pairs.



قيم البحث

اقرأ أيضاً

We prove a version of the Arnold conjecture for Lagrangian submanifolds of conformal symplectic manifolds: a Lagrangian $L$ which has non-zero Morse-Novikov homology for the restriction of the Lee form $beta$ cannot be disjoined from itself by a $C^0 $-small Hamiltonian isotopy. Furthermore for generic such isotopies the number of intersection points equals at least the sum of the free Betti numbers of the Morse-Novikov homology of $beta$. We also give a short exposition of conformal symplectic geometry, aimed at readers who are familiar with (standard) symplectic or contact geometry.
We analyze two different fibrations of a link complement M constructed by McMullen-Taubes, and studied further by Vidussi. These examples lead to inequivalent symplectic forms on a 4-manifold X = S x M, which can be distinguished by the dimension of the primitive cohomologies of differential forms. We provide a general algorithm for computing the monodromies of the fibrations explicitly, which are needed to determine the primitive cohomologies. We also investigate a similar phenomenon coming from fibrations of a class of graph links, whose primitive cohomology provides information about the fibration structure.
318 - Yael Karshon , Xiudi Tang 2021
We say that a subset of a symplectic manifold is symplectically (neighbourhood) excisable if its complement is symplectomorphic to the ambient manifold, (through a symplectomorphism that can be chosen to be the identity outside an arbitrarily small n eighbourhood of the subset). We use time-independent Hamiltonian flows, and their iterations, to show that certain properly embedded subsets of noncompact symplectic manifolds are symplectically neighbourhood excisable: a ray, a Cantor brush, a box with a tail, and -- more generally -- epigraphs of lower semi-continuous functions; as well as a ray with two horns, and -- more generally -- open-rooted finite trees.
190 - Augustin Banyaga 2008
We generalize the hamiltonian topology on hamiltonian isotopies to an intrinsic symplectic topology on the space of symplectic isotopies. We use it to define the group $SSympeo(M,omega)$ of strong symplectic homeomorphisms, which generalizes the grou p $Hameo(M,omega)$ of hamiltonian homeomorphisms introduced by Oh and Muller. The group $SSympeo(M,omega)$ is arcwise connected, is contained in the identity component of $Sympeo(M,omega)$; it contains $Hameo(M,omega)$ as a normal subgroup and coincides with it when $M$ is simply connected. Finally its commutator subgroup $[SSympeo(M,omega),SSympeo(M,omega)]$ is contained in $Hameo(M,omega)$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا