ﻻ يوجد ملخص باللغة العربية
The heart of every Monte Carlo simulation is a source of high quality random numbers and the generator has to be picked carefully. Since the ``Ferrenberg affair it is known to a broad community that statistical tests alone do not suffice to determine the quality of a generator, but also application-based tests are needed. With the inclusion of an extensible random number library and the definition of a generic interface into the revised C++ standard it will be important to have access to an extensive C++ random number test suite. Most currently available test suites are limited to a subset of tests are written in Fortran or C and cannot easily be used with the C++ random number generator library.
Currently, statistical tests for random number generators (RNGs) are widely used in practice, and some of them are even included in information security standards. But despite the popularity of RNGs, consistent tests are known only for stationary erg
We investigate the mechanism that leads to systematic deviations in cluster Monte Carlo simulations when correlated pseudo-random numbers are used. We present a simple model, which enables an analysis of the effects due to correlations in several typ
A novel Mathematical Random Number Generator (MRNG) is presented here. In this case, mathematical refers to the fact that to construct that generator it is not necessary to resort to a physical phenomenon, such as the thermal noise of an electronic d
We report a cluster of results on k-QSAT, the problem of quantum satisfiability for k-qubit projectors which generalizes classical satisfiability with k-bit clauses to the quantum setting. First we define the NP-complete problem of product satisfiabi
The generation of random bits is of enormous importance in modern information science. Cryptographic security is based on random numbers which require a physical process for their generation. This is commonly performed by hardware random number gener