ترغب بنشر مسار تعليمي؟ اضغط هنا

Subanalytic sets and complex analytic geometry

61   0   0.0 ( 0 )
 نشر من قبل Sergei Starchenko
 تاريخ النشر 2004
  مجال البحث
والبحث باللغة English
 تأليف Y.Peterzil




اسأل ChatGPT حول البحث

We consider a subanalytic subset A of a complex analytic manifold M (when M is viewed as a real manifold) and formulate conditions under which A is a complex analytic subset of M.



قيم البحث

اقرأ أيضاً

Let $f : Xto X$ be a dominating meromorphic map on a compact Kahler manifold $X$ of dimension $k$. We extend the notion of topological entropy $h^l_{mathrm{top}}(f)$ for the action of $f$ on (local) analytic sets of dimension $0leq l leq k$. For an e rgodic probability measure $ u$, we extend similarly the notion of measure-theoretic entropy $h_{ u}^l(f)$. Under mild hypothesis, we compute $h^l_{mathrm{top}}(f)$ in term of the dynamical degrees of $f$. In the particular case of endomorphisms of $mathbb{P}^2$ of degree $d$, we show that $h^1_{mathrm{top}}(f)= log d$ for a large class of maps but we give examples where $h^1_{mathrm{top}}(f) eq log d$.
239 - Franc Forstneric 2021
In this paper we construct open Stein neighbourhoods of compact sets of the form $Acup K$ in a complex space, where $K$ is a compact holomorphically convex set, $A$ is a compact complex curve with boundary $bA$ of class $mathscr C^2$ which may intersect $K$, and $Acap K$ is $mathscr O(A)$-convex.
77 - A. Fletcher 2018
If $X$ is the attractor set of a conformal IFS in dimension two or three, we prove that there exists a quasiregular semigroup $G$ with Julia set equal to $X$. We also show that in dimension two, with a further assumption similar to the open set condi tion, the same result can be achieved with a semigroup generated by one element. Consequently, in this case the attractor set is quasiconformally equivalent to the Julia set of a rational map.
294 - Gabriel Nivasch , Eran Omri 2015
Grinblat (2002) asks the following question in the context of algebras of sets: What is the smallest number $mathfrak v = mathfrak v(n)$ such that, if $A_1, ldots, A_n$ are $n$ equivalence relations on a common finite ground set $X$, such that for ea ch $i$ there are at least $mathfrak v$ elements of $X$ that belong to $A_i$-equivalence classes of size larger than $1$, then $X$ has a rainbow matching---a set of $2n$ distinct elements $a_1, b_1, ldots, a_n, b_n$, such that $a_i$ is $A_i$-equivalent to $b_i$ for each $i$? Grinblat has shown that $mathfrak v(n) le 10n/3 + O(sqrt{n})$. He asks whether $mathfrak v(n) = 3n-2$ for all $nge 4$. In this paper we improve the upper bound (for all large enough $n$) to $mathfrak v(n) le 16n/5 + O(1)$.
In this paper, by making use of a certain family of fractional derivative operators in the complex domain, we introduce and investigate a new subclass $mathcal{P}_{tau,mu}(k,delta,gamma)$ of analytic and univalent functions in the open unit disk $mat hbb{U}$. In particular, for functions in the class $mathcal{P}_{tau,mu}(k,delta,gamma)$, we derive sufficient coefficient inequalities, distortion theorems involving the above-mentioned fractional derivative operators, and the radii of starlikeness and convexity. In addition, some applications of functions in the class $mathcal{P}_{tau,mu}(k,delta,gamma)$ are also pointed out.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا