ﻻ يوجد ملخص باللغة العربية
Let $f : Xto X$ be a dominating meromorphic map on a compact Kahler manifold $X$ of dimension $k$. We extend the notion of topological entropy $h^l_{mathrm{top}}(f)$ for the action of $f$ on (local) analytic sets of dimension $0leq l leq k$. For an ergodic probability measure $ u$, we extend similarly the notion of measure-theoretic entropy $h_{ u}^l(f)$. Under mild hypothesis, we compute $h^l_{mathrm{top}}(f)$ in term of the dynamical degrees of $f$. In the particular case of endomorphisms of $mathbb{P}^2$ of degree $d$, we show that $h^1_{mathrm{top}}(f)= log d$ for a large class of maps but we give examples where $h^1_{mathrm{top}}(f) eq log d$.
We study the dynamics of meromorphic maps for a compact Kaehler manifold X. More precisely, we give a simple criterion that allows us to produce a measure of maximal entropy. We can apply this result to bound the Lyapunov exponents. Then, we study
This paper studies the uniqueness of two non-integral finite ordered meromorphic functions with finitely many poles when they share two finite sets. Also, studies an answer to a question posed by Gross for a particular class of meromorphic functions.
If $X$ is the attractor set of a conformal IFS in dimension two or three, we prove that there exists a quasiregular semigroup $G$ with Julia set equal to $X$. We also show that in dimension two, with a further assumption similar to the open set condi
We consider a subanalytic subset A of a complex analytic manifold M (when M is viewed as a real manifold) and formulate conditions under which A is a complex analytic subset of M.
Let $f$ be a univalent self-map of the unit disc. We introduce a technique, that we call {sl semigroup-fication}, which allows to construct a continuous semigroup $(phi_t)$ of holomorphic self-maps of the unit disc whose time one map $phi_1$ is, in a